1. Introduction

For \(K \) an arithmetic function and \(\tilde{\alpha} = (\alpha_m)_1^\infty, \tilde{\beta} = (\beta)_1^\infty \) complex coefficients, it is often useful to estimate bilinear forms of the shape
\[
B(K, \tilde{\alpha}, \tilde{\beta}) = \sum_m \sum_n \alpha_m \beta_n K(mn).
\]

With applications to modular forms in mind, we restrict our attention to the situation in which \(K \) is a Kloosterman or hyper-Kloosterman sum, i.e., for some \(k \geq 2 \) we have
\[
K = Kl_k(\cdot, q) : (\mathbb{Z}/q\mathbb{Z})^* \to \mathbb{C}, n \mapsto q^{1-k/2} \sum_{x_1, \ldots, x_k \in (\mathbb{Z}/q\mathbb{Z})^*} e_q(x_1 + \cdots + x_k)
\]

We can extend \(K \) to an arithmetic function by \(0 \), or in other controlled ways. Since the prime \(q \) shall be somewhat large compared to the supports of \(\tilde{\alpha} \) and \(\tilde{\beta} \), the precise nature of this extension does not affect our results. Our coefficients \(\tilde{\alpha} \) shall be supported on \([1, M] := \{1, \ldots, M\} \), while our coefficients \(\tilde{\beta} \) shall be supported on an interval \(N \subset [1, q-1] \) of length \(N \).

Since \(||K||_\infty \ll 1 \) (as a well-known consequence of Deligne’s work), we can use Cauchy or Hölder to bound \(B(K, \tilde{\alpha}, \tilde{\beta}) \) trivially, for instance,
\[
B(K, \tilde{\alpha}, \tilde{\beta}) \ll_n ||\tilde{\alpha}||_2 ||\tilde{\beta}||_2 (MN)^{1/2}(q^{-1/4} + M^{-1/2} + N^{-1/2}q^{1/4}\log q),
\]

an estimate that is nontrivial in the ranges
\[
M \geq q^\delta, N \geq q^{1/2+\delta}
\]

for some \(\delta > 0 \), for instance.

A fundamental challenge, when dealing with incomplete character sums, is to go beyond the Pólya-Vinogradov range. For Dirichlet Characters, Burgess bounds are the archetype \([\ldots]\). This was achieved in the present context by Kowalski, Michel, and Sawin \([?]\).

Theorem 1.1 \((?[?])\). Let \(q \) be a prime, and let \(M, N \in \mathbb{R} \) satisfy
\[
1 \leq M \leq Nq^{1/4}, \quad q^{1/4} < MN < q^{5/4}.
\]

Then for any \(\epsilon > 0 \) we have
\[
B(K, \tilde{\alpha}, \tilde{\beta}) \ll_n, \epsilon q^{\epsilon} ||\tilde{\alpha}||_2 ||\tilde{\beta}||_2 (MN)^{1/2}(M^{-1/2} + (MN)^{-3/16}q^{11/64}).
\]

This is nontrivial when \(M = N \geq q^{11/24+\delta} \), for instance. We offer the following bound, which goes further beyond the Pólya-Vinogradov range:
Theorem 1.2. Assume
\[1 \leq M^2 \leq Nq, \quad q^{7/8} \leq MN \leq \frac{q^2}{64}. \]
Then
\[B(K, \tilde{\alpha}, \tilde{\beta}) \ll n, \epsilon \left(||\tilde{\alpha}||_2 ||\tilde{\beta}||_2 (MN)^{1/2} (M^{-1/2} + (q^7 MN^{-8})^{1/72}). \right) \]

This beats the trivial bound when \(M = N \geq q^{5/8} + \delta \), for instance.

In applications, it is often beneficial to have specific bounds tailored to the scenario in which \(\tilde{\beta} = 1_N \). This is the ‘Type I’ scenario arising in the Vaughan [?] and Heath-Brown [?] identities, the more general situation addressed in Theorem 1.1 is known as ‘Type II’. Kowalski, Michel, and Sawin obtained the following Type I estimate:

Theorem 1.3 ([?]). Assume \(||\tilde{\alpha}||_\infty \leq 1 \), and that
\[1 \leq M \leq N^2, \quad N < q, \quad MN < q^2. \]
Then
\[B(K, \tilde{\alpha}, 1_N) \ll q^{\epsilon} ||\tilde{\alpha}||_1^{1/2} ||\tilde{\alpha}||_2^{1/2} M^{1/4} N^2 \left(\frac{M^2 N^5}{q^3} \right)^{1/12}. \]

Note that Cauchy gives \(||\tilde{\alpha}||_1 \leq M^{1/2} ||\tilde{\alpha}||_2 \), so a trivial bound is
\[B(K, \tilde{\alpha}, 1_N) \ll N ||\tilde{\alpha}||_1 \ll ||\tilde{\alpha}||_1^{1/2} ||\tilde{\alpha}||_2^{1/2} M^{1/4} N. \]

Theorem 1.3 beats this when \(M = N \geq q^{3/7 + \delta} \), for instance.

Theorem 1.4. Assume that \(||\tilde{\alpha}||_\infty \leq 1 \) and
\[1 \leq M \leq N^3, \quad MN \leq q. \]
Then
\[B(K, \tilde{\alpha}, 1_N) \ll q^{\epsilon} ||\tilde{\alpha}||_1^{2/3} ||\tilde{\alpha}||_2^{1/3} M^{1/6} N \left(\frac{q^4}{M^{1/3} N^2} \right)^{1/24}. \]

This defeats the trivial estimate
\[B(K, \tilde{\alpha}, 1_N) \ll N ||\tilde{\alpha}||_1 \ll ||\tilde{\alpha}||_1^{2/3} ||\tilde{\alpha}||_2^{1/3} M^{1/6} N, \]
as soon as \(M = N \geq q^{2/5 + \delta} \), say.

2. Proof of Theorem 1.4

To prove Theorem 1.4, we begin as in [?, §2] with the ‘+ab-shifting’ trick. Given parameters \(A, B \geq 1 \) such that
\[AB \leq N, \quad AM < q, \]
we have
\[B(K, \tilde{\alpha}, N) \ll \frac{q^\epsilon}{AB} \sum_{r \bmod q} \sum_{s \leq 2AM} \nu(r, s) \mu(r, s) \]
where
\[\nu(r, s) = \ldots \]
(note the \(N \) here should be \(N' \), an interval of length \(\leq 2N \)) and
\[\mu(r, s) = \left| \sum_{B < b \leq 2B} \eta_B K(s(r + b)) \right|. \]
For \(\nu \), we have the moment estimates
\[
||\nu||_1 \ll AN||\tilde{\alpha}||_1
\]
and
\[
||\nu||_2^2 \ll q^\epsilon AN||\tilde{\alpha}||_2^2
\]
from [?].

Now we apply Hölder’s inequality with exponent 6:
\[
\sum_{r \mod q \atop s \leq 2AM} \nu(r,s)\mu(r,s) = ||\nu\mu||_1 \\
\leq ||\nu^{2/3}||_{3/2}||\nu^{1/3}||_6||\mu||_6 \\
\ll (AN||\tilde{\alpha}||_1)^{2/3}(q^\epsilon AN||\tilde{\alpha}||_2^{1/3})^{1/6}||\mu||_6
\]

We adapt the standard notational convention that \(\epsilon \) denotes an arbitrarily small positive number, whose value may differ between instances. After a small amount of bookkeeping, we now have

\[
B(K,\tilde{\alpha},N) \ll \frac{q^\epsilon}{AB} (AN)^{\frac{5}{6}}||\tilde{\alpha}||_1^{2/3}||\tilde{\alpha}||_2^{1/3}||\mu||_6.
\]

By the triangle inequality, we have
\[
||\mu||_6^6 \leq \sum_{\tilde{b} \in \mathcal{B}} |S(K,\tilde{b}; 2AM)|
\]
where
\[
\mathcal{B} = \{\tilde{b} \in \mathbb{Z}^6 : B < b_i \leq 2B, 1 \leq i \leq 6\}
\]
and
\[
S(K,\tilde{b}; 2AM) = \sum_{r \mod q \atop s_1 = 1} \prod_{i=1}^{3} K(s(r + b_i))\overline{K}(s(r + b_{i+3})).
\]

Here \(K(x) = \overline{K}(x) \).

Definition 2.1. Let \(\mathcal{V}^\Delta \) be the affine variety of sextuples
\[
\tilde{b} = (b_1, \ldots, b_6) \in \mathbb{A}_F^6
\]
defined by the conditions
\[
\begin{align*}
(1) & \text{ If } k \text{ is even, then for any } i \in \{1, \ldots, 6\} \text{ the cardinality } \#\{j : b_j = b_i\} \text{ is even.} \\
(2) & \text{ If } k \text{ is odd and not equal to } 3, \text{ then } \{\{b_1,b_2,b_3\}\} = \{\{b_4,b_5,b_6\}\} \text{ is an equality of multisets.} \\
(3) & \text{ If } k = 3, \text{ then either } \{\{b_1,b_2,b_3\}\} = \{\{b_4,b_5,b_6\}\} \text{ or } \tilde{b} = (b,b,b,b',b',b') \\
& \text{ for some } b,b'.
\end{align*}
\]

The role of the ‘diagonal set’ is played by
\[
\mathcal{B}^\Delta = \{\tilde{b} \in \mathcal{B} : \tilde{b} \mod q \in \mathcal{V}^\Delta\}.
\]

Observe that the contribution from the vectors \(\tilde{b} \in \mathcal{B}^\Delta \) to \(||\mu||_6^6 \) satisfies
\[
\sum_{\tilde{b} \in \mathcal{B}^\Delta} |S(K,\tilde{b}; 2AM)| \ll qAB^3M := x_1.
\]
For \(\tilde{b} \not\in B^\Delta \), we can exploit averaging over \(r \):

Lemma 2.2. For \(b \in B \setminus B^\Delta \) and \(s \in F_q^\times \), we have

\[
\sum_{r \mod q} \prod_{i=1}^{3} K(s(r+b_i)) \overline{K}(s(r+b_{i+3})) \ll q^{1/2}.
\]

In particular, for any \(B' \subset B \setminus B^\Delta \) we have

\[
\sum_{\tilde{b} \in B'} |S(K, \tilde{b}, 2AM)| \ll AMq^{1/2}|B'|.
\]

We refer to §3 for the proof. Generically we’ll need to save more than \(q^{1/2} \).

An application of the Plancherel formula—this is the Pólya-Vinogradov method from §4 of our course notes—yields

\[
S(K, \tilde{b}, 2AM) \ll (\log q) \max_{\lambda \mod q} |\hat{S}(K, \tilde{b}, \lambda)|
\]

where

\[
\hat{S}(K, \tilde{b}, \lambda) = \sum_{r \mod q} R(K, r, \lambda, \tilde{b})
\]

with

\[
R(K, r, \lambda, \tilde{b}) = R(K, r, \lambda, \hat{b}) = \sum_{s \mod q} e_q(\lambda s) \prod_{i=1}^{3} K(s(r+b_i)) \overline{K}(s(r+b_{i+3})).
\]

By following the proof of [? , Theorem 2.3], we obtain the following generic estimate.

Theorem 2.3. There exists a codimension one subvariety \(V^{\text{bad}} \subset A_{F_q}^6 \) containing \(V^\Delta \), with degree bounded independently of \(q \), such that if \(\lambda \in F_q \) and \(\tilde{b} \not\in V^{\text{bad}}(F_q) \) then \(\hat{S}(K, \tilde{b}, \lambda) \ll q \) and therefore \(S(K, \tilde{b}, 2AM) \ll q \log q \).

This uses the full power of Deligne-Katz [?], but an improvement could still be sought on the codimension.

Write

\[
B^{\text{bad}} = \{ \tilde{b} \in B : \tilde{b} \mod q \in V^{\text{bad}}(F_q) \}
\]

and

\[
B^{\text{gen}} = B \setminus B^{\text{bad}}.
\]

By Schwartz-Zippel and uniformity of the degree bound, we have \#\(B^{\text{bad}} \leq (\deg V^{\text{bad}}) B^5 \ll B^5 \). Thus by Lemma 2.2 we have

\[
\sum_{\tilde{b} \in B^{\text{bad}} \setminus B^\Delta} |S(K, \tilde{b}; 2AM)| \ll q^{1/2}AB^5M := x_2.
\]

By Theorem 2.3 we have

\[
\sum_{\tilde{b} \in B^{\text{gen}}} |S(K, \tilde{b}; 2AM)| \ll (\log q)qB^6 := (\log q)x_3.
\]

Thus

\[
\|\mu\|_6^6 \ll (x_1 + x_2 + x_3) \log q
\]

where \(x_1 = qAB^3M, x_2 = q^{1/2}AB^5M, x_3 = qB^6 \).
Choosing
\[A = M^{-1/4}N^{3/4}, \quad B = M^{1/4}N^{1/4} \]
ensures that \(AB = N \) and \(x_1 = x_3 \).

We note that the hypotheses of our theorem ensure that
\[A \geq 1, \quad AM < q \]
as our parameters are acceptable. Moreover, the hypothesis \(MN \leq q \) ensures that \(x_2 \leq x_3 = q(MN)^{3/2} \).

Now from (1) we have
\[
B(K, \tilde{\alpha}, \mathcal{N}) \ll \frac{q^\epsilon}{N}(AN)^{5/6}||\tilde{\alpha}||_{2}^{2/3}||\alpha||_{1}^{1/3}q^{-1/6}(MN)^{1/4}
\]
\[
= \frac{q^{\epsilon+1/6}}{N}N^{-5/6}\left(M\right)^{1/24}||\tilde{\alpha}||_{1}^{2/3}||\alpha||_{2}^{1/3}(MN)^{1/4}
\]
\[
= q^{\epsilon+1/6}M^{1/24}N^{17/24}||\tilde{\alpha}||_{1}^{2/3}||\alpha||_{2}^{1/3}
\]
\[
= q^{\epsilon}M^{1/6}N||\tilde{\alpha}||_{1}^{2/3}||\alpha||_{2}^{1/3}\left(\frac{q^{4}}{M^{3}N^{3}}\right)^{1/24}
\]

We use a similar strategy to prove Theorem 1.2. This time Cauchy-Schwartz, the +ab-shifting trick, and Hölder-6 give
\[
B(K, \tilde{\alpha}, \tilde{\beta})^2 \ll ||\tilde{\alpha}||_{2}^{2}||\tilde{\beta}||_{2}^{2}(N + \frac{q^\epsilon}{AB}M^{2/3}(AN)^{5/6}||\mu'||_{6}),
\]
where
\[
||\mu'||_{6} = \sum_{\theta \in \mathcal{B}}|S^{\theta}(K, \tilde{b}; 2AM)|.
\]

Here
\[
S^{\theta}(K, \tilde{b}; 2AM) = \sum_{r \mod q \atop s_1 \neq s_2 \mod q \atop 1 \leq i \leq 3} K(s_1(r+b_i))K(s_2(r+b_i))K(s_1(r+b_{i+3}))K(s_2(r+b_{i+3})).
\]

In §3, we shall also confirm the following analogue of Lemma 2.2:

Lemma 2.4. For any subset \(\mathcal{B}' \subset \mathcal{B} \setminus \mathcal{B}^\Delta \) we have
\[
\sum_{\theta \in \mathcal{B}'} |S^{\theta}(K, \tilde{b}; 2AM)| \ll (AM)^{2}q^{1/2}|\mathcal{B}'|.
\]

For \(\mathcal{B}^\Delta \), we have the trivial bound
\[
(2) \quad \sum_{\theta \in \mathcal{B}'} |S^{\theta}(K, \tilde{b}; 2AM)| \ll qA^{2}B^{3}M^{2} := y_1.
\]

We WHAT the condition \(s_1 \neq s_2 \mod q \) by the indicator function expression,
\[
1 - \frac{1}{q} \sum_{\lambda \mod q} e\left(\lambda(s_1 - s_2)\right).
\]

The Pólya-Vinogradov method then gives
\[
S^{\theta}(K, \tilde{b}; 2AM) \ll (\log q)^{2} + (\log q)^{2} \max_{\lambda_1, \lambda_2 \mod q} |\tilde{S}(K, \tilde{b}, \lambda_1, \lambda_2)|.
\]
Theorem 2.5. There exists a codimension one subvariety \(V^\Delta \subset \mathbb{A}^6_F \) containing \(V \), with degree bounded independently of \(q \), such that for every \(\tilde{b} \notin V^\Delta(F_q) \) and every distinct \(\lambda_1, \lambda_2 \in F_q \), we have
\[
\tilde{S}(K, \tilde{b}, \lambda_1, \lambda_2) = \zeta(\lambda_1, \lambda_2, \tilde{b}) - \frac{1}{q} \sum_{\lambda \mod q} \zeta(\lambda_1 + \lambda, \lambda_2 + \lambda, \tilde{b}),
\]
where
\[
\zeta(\lambda_1, \lambda_2, \tilde{b}) = \sum_{r \mod q} R(r, \lambda_1, \tilde{b})R(r, \lambda_2, \tilde{b}).
\]

Mimicking the proof of [KMS, Theorem 2.5] gives

Theorem 2.5. There exists a codimension one subvariety \(V^\Delta \subset \mathbb{A}^6_F \) containing \(V \), with degree bounded independently of \(q \), such that for every \(\tilde{b} \notin V^\Delta(F_q) \) and every distinct \(\lambda_1, \lambda_2 \in F_q \), we have
\[
\tilde{S}(K, \tilde{b}, \lambda_1, \lambda_2) \ll q^{3/2}.
\]

In fact, \(V^\Delta \) is the same in Theorem 2.3 and Theorem 2.5. Using Lemma 2.4 for \(\tilde{b} \notin B^{\text{gen}} \) gives
\[
||\mu||_B^2 \ll (\log q)^2(y_1 + y_2 + y_3)
\]
where
\[
y_1 = qA^2B^3M^2, \quad y_2 = q^{1/2}A^2B^5M^2, \quad y_3 = q^{3/2}B^6.
\]
Choosing
\[
A = q^{1/3}M^{-2/3}N^{1/3}, \quad B = q^{-1/3}M^{2/3}N^{2/3},
\]
we have
\[
AB = N, \quad y_2 = y_3.
\]

Moreover, the hypothesis \(MN \geq q^{7/8} \) implies that \(y_1 \leq y_3 = q^{-1/2}M^4N^4 \). Now
\[
\frac{B(K, \tilde{\alpha}, \tilde{\beta})}{||\tilde{\alpha}||_2||\tilde{\beta}||_2} \ll \sqrt{N} + q^e\left(\frac{M^{2/3}(AN)^{5/6}}{AB}\right)^{1/2}\left(\frac{M^4N^4}{q^{1/2}}\right)^{1/12}
\]
\[
= \sqrt{N} + q^{-1/24}M^{1/3}(qM^{-2}N^4)^{5/36}M^{1/3}N^{1/6}
\]
\[
= \sqrt{N} + q^{e+7/72}M^{7/18}N^{7/18}
\]
\[
= \sqrt{N} + q^e(MN)^{1/2}(q^7(MN)^{-8})^{1/72}.
\]

Thus
\[
B(K, \tilde{\alpha}, \tilde{\beta}) \ll q^e||\tilde{\alpha}||_2||\tilde{\beta}||_2(MN)^{1/2}(M^{-1/2} + q^7(MN)^{-8})^{1/72}.
\]

3. PROOF OF LEMMAS

Proof of Lemma 2.2. We appeal directly to [?, Corollary 1.6]. The relevant vector is
\[
\tilde{\gamma} = (\gamma_{s,1}, \ldots, \gamma_{s,6}),
\]
where
\[
\gamma_{s,i} = \begin{pmatrix} s & sb_i \\ 0 & 1 \end{pmatrix},
\]
for \(i = 1, \ldots, 6 \).

- **Case 1:** \(k \) even. If \(\tilde{b} \notin B^\Delta \) then there exists an \(i \) such that \(\#\{j : b_j = b_i\} \) is odd.
Case 2: \(k > 3 \) odd. Here \(\tilde{\sigma} = (1, 1, 1, c, c, c) \), where \(c \) denotes complex conjugation. If \(\tilde{b} \not\in B^A \), then
\[
\{\{b_1, b_2, b_2\}\} \neq \{\{b_4, b_5, b_6\}\}.
\]
In particular, there exists an \(i \) such that
\[
\#\{j : b_i = b_j, j \geq 3\} \neq \#\{j : b_i = b_j, j \geq 4\}.
\]
As known from [5, Remark 1.9], the special involution is
\[
\xi = \begin{pmatrix}
-1 & 0 \\
0 & 1
\end{pmatrix}.
\]
Since \(q \neq 2 \) and \(s \in F_q^\times \), we can never have \(\xi \gamma_i = \gamma_j \). The conditions (2) and (3) of [5, Definition 1.3] are thus equivalent.

Case 3: \(k = 3 \) This is almost the same as Case 2. The only thing that could go wrong is if \(\beta = (b, b, b, b', b', b') \), but we have explicitly excluded this.

\[\square\]

Proof of Lemma 2.4. We have
\[
\tilde{\gamma} = (\gamma_{s_1,1}, \ldots, \gamma_{s_1,6}, \gamma_{s_2,1}, \ldots, \gamma_{s_2,6})
\]
and
\[
\tilde{\sigma} = (1, 1, 1, c, c, c, c, c, 1, 1, 1).
\]
Recall that \(s_1 \neq s_2 \) mod \(q \).

- Case 1: \(k \) even. If \(\tilde{b} \not\in B^A \) then there exists an \(i \) such that \(\#\{j : b_j = b_i\} \) is odd. Thus \(\#\{j \leq 12 : \gamma_j = \gamma_i\} \) is odd; here \(\gamma_i = \gamma_{s_1,i} \), since \(i < b \).
- Case 2: \(k > 3 \) odd. If \(\tilde{b} \not\in B^A \) then
\[
\#\{j : b_i = b_j, j \geq 3\} \neq \#\{j : b_i = b_j, j \geq 4\},
\]
so there exists \(i \leq 6 \) such that
\[
\#\{j \leq 3 : b_j = b_i\} \neq \#\{j \geq 4 : b_j = b_i\}.
\]
and note that \(\gamma_j \neq \gamma_i \) for \(j > 6 \) (as \(s_1 \neq s_2 \) mod \(q \)). Since \(k > 3 \), this also means that the two expressions are incongruent modulo \(k \).

Also, \(k \)-normality of \((\tilde{\gamma}, \tilde{\sigma})\) is the same with or without respect to the special involution \(\xi \), since we can never have \(\xi \gamma_i = \gamma_j \). To see this, note that if \(\xi \gamma_i = \gamma_j \) then
\[
q|2s_i \text{ or } q|(s_1 + s_2),
\]
for some \(i = 1, 2 \), both of which are impossible since \(q \neq 2, s_i \in F_q^\times \), and
\[
4AM = 4(qMN)^{1/3} \leq q \iff 64MN \leq q^2
\]
the latter given by our hypothesis.

- Case 3: \(k = 3 \). Again this is basically the same as Case 2, since we’ve explicitly forbidden vectors \(b \) of the shape \((b, b, b, b'b'b')\).

\[\square\]