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B.3. Stochastic differential equations and PDEs 64

These are notes for a course on Stochastic Calculus, and are meant to supplement the texts Dur-

rett, Probability: Theory and Examples; Karatzas-Sheve [KS], Brownian Motion and Stochastic

Calculus; and Øksendahl, Stochastic Differential Equations: An Introduction with Applications.

There’s almost surely typos in the text, so please use at your own risk!



STOCHASTIC PROCESSES 3

1. Preliminaries

1.1. Stochastic process. Throughout, the probability space (Ω,F , P ) will be the
sample space, on which a collection of random variables, i.e., measurable functions
X = {Xt; 0 ≤ t <∞} will be defined and called a stochastic process, taking values

in the state space (S,S ). Most of the time, we will take (S,S ) = (Rd,B(Rd)),
where for any topological space U the Borel sets B(U) will denote the σ-algebra
generated by the open sets in U .

For a fixed sample point ω ∈ Ω, the function t 7→ Xt(ω), t ≥ 0 is the sample
path of the process X associated to ω. If X and Y are stochastic processes defined
on (Ω,F , P ) and (Ω′,F ′, P ′) respectively, then we say they have the same finite-
dimensional distributions if for any integer n ≥ 1, real numbers 0 ≤ t1 < · · · < tn <
∞, and A ∈ B(Rd), we have

(1.1.1) P [(Xt1 , . . . , Xtn) ∈ A] = P ′[(Yt1 , . . . , Ytn) ∈ A].

We say X is measurable if the mapping (t, ω) 7→ Xt(ω) : ([0,∞)×Ω,B(Rd)⊗F )→
(Rd,B(Rd)) is measurable.

1.1.1. Filtrations. Next we equip our sample space with a filtration {Ft; 0 ≤ t <
∞}, a non-decreasing family of σ-subalgebras Fs ⊂ Ft ⊂ F , 0 ≤ s < t < ∞.
Given a stochastic process X, the simplest filtration is that generated by X itself
FX
t = σ(Xs; 0 ≤ s < t), the smallest σ-algebra with respect to which Xs is

measurable for every s ∈ [0, t]. On the other hand, we say a process X is adapted
to a filtration {Ft} if Xt is Ft-measurable for every t ≥ 0.

Let Ft be a filtration. Define Ft− = σ(∪s<tFs) to be the σ-algebra of past
events, and Ft+ = ∩s>tFs to be the σ-algebra of future events after t ≥ 0. Define
F0− := F0. We say the filtration is right-(resp. left-)continuous if Ft = Ft+ (resp.
Ft = Ft−) for all t ≥ 0. When X = {Xt,FX

t ; 0 ≤ t <∞} is a process on (Ω,F ),
then left-continuity of Ft at some fixed t > 0 can be interpreted to mean that Xt
can be discovered by observing Xs, 0 ≤ s < t. Right-continuity means intuitively
that if Xs has been observed for 0 ≤ s < t, then nothing more can be learned by
peeking infinitesimally far into the future. Here FX

t = σ(Xs; 0 ≤ s < t).

1.1.2. Time. A random time T is an F -measurable random variable on (Ω,F )
taking values in [0,∞]. If X is a stochastic process, define the function XT on the
event {T <∞} by XT (ω) := XT (ω)(ω). If X∞(ω) is defined for all ω ∈ Ω, then XT

can be defined on Ω by setting XT (ω) = X∞(ω) on {T = ∞}. If X is measurable
and T is finite, then XT is a random variable.

Now let {Ft} be a filtration on (Ω,F ). A random time T is called a stopping
time of the filtration if {T ≤ t} ∈ Ft for all ≥ 0, and an optional time if {T < t} ∈
Ft for all ≥ 0. Every random time equal to a nonnegative constant is a stopping
time. Every stopping time is optional, and the two concepts coincide if the filtration
is right-continuous.

Let X be a process with right-continuous paths, adapted to {Ft}. Let A ∈ S
in state space, then define the hitting time HA(ω) = inf{t ≥ 0;Xt(ω) ∈ A}, with
the convention that the infimum of the empty set is infinity. If A is open, then HA

is an optional time; if A is closed and the sample paths of X are continuous, then
HA is a stopping time.

1.2. Continuous-time martingales. An example of a discrete-time martingale
is a symmetric simple random walk. An example of a continuous-time martingale
is a Brownian motion. Brownian motion also happens to be a continuous function
of t, but this is not always true of continuous-time martingales. Consider the R-
valued process X = {Xt; 0 ≤ t < ∞} on a probability space (Ω,F,P ), adapted to
a filtration {Ft} and such that E|Xt| < ∞ holds for all t ≥ 0. Then we say that
X = {Xt,Ft; 0 ≤ t < ∞} is a submartingale (resp. supermartingale) if for every
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0 ≤ s < t < ∞ we have E[Xt|Fs] ≥ Xs (resp. E[Xt|Fs] ≤ Xs). If it is both a
super- and sub-martingale, then we call X a martingale.

We shall sometimes consider processX whose sample pathsXt(ω) are RCLL, i.e.,
right-continuous on t ∈ [0,∞) and with finite left-hand limits on (0,∞), or some
other combination of Rs and Ls. Sometimes this is also called a cádlág process
(French abbreviation).

1.2.1. Continuous, square-integrable martingales. Now, let X = {Xt,Ft; 0 ≤ t <
∞} be a right-continuous martingale. We say thatX is square-integrable if E[X2

t ] <
∞ for all t ≥ 0. Let M2 be the collection of square-integrable, right-continuous
martingales X with X0 = 0 a.e., and M c

2 the subset of X ∈M2 that are continuous.
Define a metric by

(1.2.1) ||X|| =
∞∑
n=1

2−n||X||n ∧ 1, ||X||2n = E[X2
t ],

under which M2 forms a complete metric space, and M c
2 a closed subspace.

Let X = {Xt,Ft; 0 ≤ t < ∞} be a process with X0 = 0 a.e. If there exists a
non-decreasing sequence {Tn} of stopping times of {Ft} such that {Xt∧Tn ,Ft; 0 ≤
t < ∞} is a martingale for each n ≥ 1 and P (limn→∞ Tn = ∞) = 1, then we say
that X is a local martingale.

For any X ∈ M2, X2 is a nonnegative submartingale, and has a unique Doob-
Meyer decomposition

(1.2.2) X2
t = Mt +At, 0 ≤ t <∞

where M = {Mt,Ft, 0 ≤ t < ∞} is a right-continuous martingale and A =
{At,Ft, 0 ≤ t < ∞} is a natural increasing process, i.e., t 7→ At(ω) is a non-
decreasing, right-continuous function, E[At] <∞ for all 0 ≤ t <∞, and (natural)
for every bounded right continuous martingale N we have

(1.2.3) E[

∫
(0,t]

NsdAs] = E[

∫
(0,t]

MsdAs], 0 < t <∞.

We normalise these processes so that M0 = A0 = 0 P -a.s. If X ∈M c
2 , then M and

A are also continuous.
For X ∈ M2, the quadratic variation of X can be defined as 〈X〉t = At, and

one checks that this coincides with the definition given later below. In other words,
〈X〉 is the unique adapted, natural increasing process for which 〈X〉0 = 0 a.s. and
X2 − 〈X〉 is a martingale.

For any two martingales X,Y ∈M2, define their cross-variation process 〈X,Y 〉
by

(1.2.4) 〈X,Y 〉t :=
1

4
(〈X + Y 〉t − 〈X − Y 〉t), 0 ≤ t <∞.

And observe that XY − 〈X,Y 〉 is a martingale. Two elements X,Y are called
orthogonal if 〈X,Y 〉t = 0 a.s. for every 0 ≤ t <∞. Also, 〈·, ·〉 is a bilinear form on
M2.

1.3. The Markov property. The Markov chain condition P (Xn+1 ∈ B|Fn) =
p(Xn, B) is clear, especially if you consider the discrete case
(1.3.1)
P (Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P (Xn+1 = j|Xn = i) := p(i, j).

The Markov property Eµ(Y ◦ θn|Fn) = EXnY tells us that shifting by θn, we can
basically forget the conditioning Fn (information up to n) and start at Xn.

The strong Markov applies Markov to stopping times. Recall thatN is a stopping
time if {N = n} ∈ Fn for all n. Then we restrict ourselves to

(1.3.2) FN = {A ∈ F : A ∩ {N = n} ∈ Fn∀n}.
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We want to make sense of Eµ(YN ◦ θN |FN ) = EXNYN on {N <∞}, which heuris-
tically means that shifting to the stopping time N , we can forget the conditioning
up to FN and start fresh at XN . The way to see this is by fixing A ∈ FN , and
computing

(1.3.3) Eµ(YN ◦ θN ;A ∩ {N <∞}) =

∞∑
n=0

Eµ(YN ◦ θN ;A ∩ {N = n})

The random variable N takes values at integers n. So at each level we understand
Eµ(YN ◦ θN ;A∩{N = n}) = Eµ(Yn ◦ θn;A∩{N = n}). Then applying the Markov
property we get

(1.3.4)

∞∑
n=0

Eµ(EXnYn;A ∩ {N = n}) = Eµ(EXNYN ;A ∩ {N <∞})

recalling that for conditional expectation E(E(Y |F)) = E(Y ), and that E(X|F) =
E(X; Ωi)/P (Ωi) on Ωi, where F = σ(Ω1,Ω2 . . . ) where the Ωi are disjoint. In our
case, take Ωi = A ∩ {N <∞} (the other being A ∩ {N =∞}).

Example 1.1. In the random walk example, µ was the distribution of the iid ran-
dom variables ξ1, ξ2, · · · ∈ Zd, meaning that µ(A) = P (ξn ∈ A) for any measurable
set A, and P a probability measure on Zd. So if Xn = i, the probability that
Xn+1 = j, is captured by the transition probability

(1.3.5) p(i, j) = P (ξn+1 = i− j).
(For a nice example of a probability measure on Z, look up the zeta distribution.)

2. Brownian motion

A one-dimensional Brownian motion is a continuous adapted processB = {Bt,Ft; 0 ≥
t} defined on a probability space (Ω,F , P ) such that for 0 ≤ s < t < ∞, (a) the
increment Bt − Bs is independent of Fs, and (b) Bt − Bs is normally distributed
with mean zero and variance t − s. If B0 = 0, we call B a standard Brownian
motion.

Proposition 2.1. B is a square-integrable martingale.

Proof. By Jensen’s inequality, E|Bt|2 ≤ E[B2
t ] = var(Bt) = t <∞, so it is square-

integrable. Also, for 0 ≤ s < t <∞, we have

(2.0.1) E[Bt|Fs] = E[Bt −Bs|Fs] + E[Bs|Fs] = E[Bt −Bs] + E[Bs] = Bs,

where we have used the independence of Bt −Bs of Fs and Bs ∈ Fs. �

2.1. The invariance principle. Let {ξn} be a sequence of i.i.d. random vari-
ables with mean 0 and variance σ2, 0 < σ < ∞. Consider the partial sums Sn =∑n
i=1 ξi, S0 = 0. We can define a continuous-time process by linear interpolation:

(2.1.1) Yt = S[t] + (t− [t])ξ[t]+1, t ≥ 0,

where [t] is the floor function. Scaling by time and space, we obtain a sequence of
processes

(2.1.2) X
(n)
t =

1

σ
√
n
Ynt, t ≥ 0.

Observe that for s = k/n and t = (k + 1)/n, the increment X(n)t − X(n)s =
(1/σ
√
n)ξk+1 is independent of σ(ξ1, . . . , ξk), has zero mean and variance t − s.

This suggests that {X(n)} is approximately Brownian motion. Even though the
random variables ξi are not necessarily normal, the central limit theorem implies
that the limiting distributions of the increments are.



6 STOCHASTIC PROCESSES

Theorem 2.2. Let {X(n)} be defined as above. Then for 0 ≤ t1 < · · · < td < ∞
we have the convergence in distributions

(2.1.3) (X
(n)
t1 , . . . , X

(n)
td

)
D→ (Bt1 , . . . , Btd)

as t→∞, and {Bt,Ft; t ≥ 0} is standard one-dimensional Brownian motion.

Proof. See [KS, 4.17] for the full proof. Here we’ll prove only convergence in
probability, and with d = 2. That is, for s = t1, t = t2, we want to show that

(X
(n)
s , X

(n)
t )→ (Bs, Bt) in probability. Now, since

(2.1.4)

∣∣∣∣X(n)
t − 1

σ
√
n
S[tn]

∣∣∣∣ ≤ 1

σ
√
n
|ξ[tn]+1|,

we have by the Čebyšev inequality,

(2.1.5) P

[∣∣∣∣X(n)
t − 1

σ
√
n
S[tn]

∣∣∣∣ > ε

]
≤ 1

ε2n
→ 0

as n→∞. It is clear then that

(2.1.6)

∣∣∣∣∣∣∣∣(X(n)
s , X

(n)
t )− 1

σ
√
n

(S[sn], S[tn])

∣∣∣∣∣∣∣∣→ 0

in probability.
We claim that if in addition

(2.1.7)
1

σ
√
n

(S[sn], S[tn])
D→ (Bs, Bt)

then (X
(n)
s , X

(n)
t )

D→ (Bs, Bt) by [KS, 4.16]. Since Bt − Bs 7→ Bt is a continuous
function, this is equivalent to proving that [KS, 4.5]

(2.1.8)
1

σ
√
n

(S[sn], S[tn] − S[sn])
D→ (Bs, Bt −Bs).

By the independence of the random variables {ξn}, we have

lim
n→∞

E[exp
( iu

σ
√
n

[sn]∑
i=1

ξi +
iv

σ
√
n

[tn]∑
i=[sn]+1

ξi

)
]

= lim
n→∞

E[exp
( iu

σ
√
n

[sn]∑
i=1

ξi

)
] · lim
n→∞

E[
( iv

σ
√
n

[tn]∑
i=[sn]+1

ξi

)
]

provided the limits exist. Since

(2.1.9)

∣∣∣∣∣∣ 1

σ
√
n

[sn]∑
i=1

ξi −
√
s

σ
√

[sn]

[sn]∑
i=1

ξi

∣∣∣∣∣∣→ 0

in probability, and by the central limit theorem
√

(s/σ2[sn]
∑[sn]
i=1 ξi converges in

distribution to a normal random variable with mean 0 and variance s, we have

(2.1.10) lim
n→∞

E[exp
( iu

σ
√
n

[sn]∑
i=1

ξi

)
] = e−u

2s/2

and similarly,

(2.1.11) lim
n→∞

E[
( iv

σ
√
n

[tn]∑
i=[sn]+1

ξi

)
] = e−v

2t−s/2

completing the proof of convergence in probability. To extend to convergence in
distribution use [KS, Lemma 4.18, 4.19] to prove tightness of the sequence. �
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Theorem 2.3 (The invariance principle of Donsker). Let {ξi} be a sequence of
i.i.d. random variables with zero mean and finite variance σ2 > 0, defined on a

probability space (Ω,F , P ). Define X(n) = {X(n)
t ; t ≥ 0} as above, and let Pn

be the measure induced by X(n) on (C[0,∞),B(C[0,∞))). Then {Pn} converges
weakly to a measure P , under which the coordinate mapping process Bt(ω) := ω(t)
on C[0,∞) is a standard one-dimensional Brownian motion.

The resulting probability measure P is called the Wiener measure.

2.2. The Markov property. We first need to define d-dimensional Brownian mo-
tion and Brownian families.

Definition 2.4. Let d be a positive integer and µ a probability measure on (Rd,B(Rd)).
Let B = {Bt,Ft; t ≥ 0} be a continuous, adapted process with values in Rd, de-
fined on a probability space (Ω,F , P ). We call it a d-dimensional Brownian
motion with distribution µ if (i) P (B0 ∈ A) = µ(A) for all A ∈ B(Rd), and (ii)
for 0 ≤ s < t < ∞, the increment Bt − Bs is independent of Fs and is normally
distributed with mean zero and covariance matrix equal to (t− s)Id where Id is the
(d× d)-identity matrix. If µ assigns measure 1 to some singleton {x}, we say that
B is a d-dimensional Brownian motion starting at x.

We have given a construction of this using Kolmogorov’s extension theorem
(see Durrett). Here is a second way: Let P 0 = P (1) × · · · × P (n) be d copies
of Wiener measure. Under P 0, the coordinate mapping process Bt(ω) := ω(t)
together with the filtration Ft generated by Bt is a d-dimensional Brownian motion
starting at the origin. Given x ∈ Rd, we can also define the probability measure
on (C[0,∞)d,B(C[0,∞)d)) by

(2.2.1) P x(A) = P 0(A− x), A ∈ B(C[0,∞)d)

where F − x = {ω ∈ C[0,∞)d : ω + x ∈ A}, giving Brownian motion starting at x.
Finally, for a probability measure µ on (Rd,B(Rd)), we define Pµ on B(C[0,∞)d)
by

(2.2.2) Pµ(A) =

∫
Rd

P x(A)µ(dx).

Now, given a metric space (S, d), we denote by B(S)µ the competion of the
Borel σ-algebra B(S) with respect to the finite measure µ on (S,B(S)). We

define the universal σ-algebra U = ∩µB(S)µ, where the intersection is over all
finite/probability measures µ. A U (S)/B(|R)-measurable, real-valued function is
called universally measurable.

Definition 2.5. A d-dimensional Brownian family is an adapted, d-dimensional
process B = {Bt,Ft; t ≥ 0} on a measurable space (Ω,F ) and a family of proba-
bility measures {P x} such that

(1) for each A ∈ F , the mapping x 7→ P x(A) is universally measurable,
(2) for each x ∈ Rd, we have P x(B0 = x) = 1,
(3) under each P x, the process B is a d-dimensional Brownian motion starting

at x.

In fact, the construction above shows that x 7→ P x(A) is Borel-measurable for
each A ∈ F , which implies (i).

Exercise 1. Let X and Y be d-dimensional random vectors on (Ω,F , P ). If
G ⊂ F is a sub-σ-algebra, X is indepdent of G adn Y is G -measurable, then for
every A ∈ B(Rd) we have

(1) P [X + Y ∈ A|G ] = P [X + Y ∈ A|Y ], P -a.e.
(2) P [X + Y ∈ A|Y = y] = P [X + y ∈ A] for PY −1-a.e. y ∈ Rd.

where PY −1(B) = P (ω ∈ Ω : X(ω) ∈ B) for any B ∈ B(Rd.)
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From this it follows that

(2.2.3) Pµ[Bt ∈ A|Fs] = Pµ[Bt ∈ A|Bs], 0 ≤ s < t,A ∈ B(Rd).

That is, information for Bt up to time s is the same as the information of Bs.
Secondly,

(2.2.4) Pµ[Bt ∈ A|Bs = y] = P y[Bt−s ∈ A]], 0 ≤ s < t,A ∈ B(Rd).

That is, Bt = (Bt −Bs) +Bs is distributed the same as Bt−s under P y, Bs = y.

Definition 2.6. Let µ be a probability measure on (Rd,B(Rd)). An adapted,
d-dimensional process X = {Xt,Ft; t ≥ 0} on some probability space (Ω,F , P ) is
called a Markov process with initial distribution µ if (i) Pµ(X0 ∈ A) = µ(A) for
all A ∈ B(Rd), and (ii) for s, t ≥ 0 and A ∈ B(Rd) we have

(2.2.5) Pµ[Xt+s ∈ A|Fs] = Pµ[Xt+s ∈ Xs], Pµ-a.s.

If {P x} is a family of probability measures on (Ω,F ), then X is a Markov family
if

(1) for each A ∈ F , the mapping x 7→ P x(A) is universally measurable,
(2) for each x ∈ Rd, we have P x(X0 = x) = 1,
(3) for each x ∈ Rd, s, t ≥ 0 and A ∈ B(Rd),

(2.2.6) P x[Xt+s ∈ A|Fs] = P x[Xt+s ∈ Xs], P x-a.s.

(4) for each x ∈ Rd, s, t ≥ 0 and A ∈ B(Rd),

(2.2.7) P x[Xt+s ∈ A|Xs = y] = P y[Xt ∈ A], P xX−1
s -a.s. y

It the follows form that a d-dimensional Brownian motion (resp. family) is a
Markov process (resp. family).

2.3. Brownian sample paths. An Rd-valued stochastic process X = {Xt; 0 ≤
t <∞} is called Gaussian if for any integer k ≥ 1 and real numbers 0 ≤ t1 < t2 <
· · · < tk < ∞, the random vector (Xt1 , . . . , Xtk) has a joint normal distribution.
If the distribution (Xt+t1 , . . . , Xt+tk) does not depend on t, then we say that the
process is stationary.

The finite-dimensional distributions of a Gaussian process X are determined by
its expectation vector µ(t) := EXt, t ≥ 0 and its covariance matrix

(2.3.1) ρ(s, t) := E[(Xs − µ(s))(Xt − µ(t))T ], s, t ≥ 0.

If µ(t) = 0 for all t ≥ 0, we say that X is a zero-mean Gaussian process.
A one-dimensional Brownian motion is a zero-mean Gaussian process with co-

variance ρ(s, t) = s ∧ t. Conversely, any zero mean Gaussian process with a.s.
continuous paths and covariance function s ∧ t is a one-dimensional Brownian mo-
tion.

Remark 2.7 (Equivalence of definitions for Brownian motion). (Refer to [D].) By
translation invariance we’ll set B0 = 0. By (a) and (b) and the definitions that (a’)
Bt is a Gaussian process. To get (b’), let s < t, check that

(2.3.2) EBsBt = E[B2
s +Bs(Bt −Bs)] = E[B2

s ] = s.

To go the other direction, notice that (a’) and (b’) determines the finite-dimensional
distributions of of Bt, and from the above equation you can see that they agree
with the ones defined in (a) and (b).

Exercise 2. Let W = {Wt,Ft; 0 ≤ t <∞} be a standard Brownian motion. Show
that the following processes obtained from ‘equivalence transformations’ are also
standard Brownian motion:

(1) Scaling: c > 0

(2.3.3) Xt =
1√
c
Wct, 0 ≤ t <∞
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(2) Time-inversion:

(2.3.4) Yt =

{
tW1/t, 0 < t <∞
0, t = 0

(3) Time-reversal: for fixed T > 0, Zt = WT −WT−t, 0 ≤ t ≤ T
(4) Symmetry: −Wt.

2.3.1. Nowhere differentiability. Let f : [0,∞) → R be a continuous function.
Define the upper and lower (right and left) Dini derivatives at t by

(2.3.5) D±f(t) = lim sup
h→0±

f(t+ h)− f(t)

h
, D±f(t) = lim inf

h→0±

f(t+ h)− f(t)

h
.

We say f is differentiable at t from the right (resp. left) if D+f(t) = D+f(t) exist
(resp. D−f(t) = D−f(t)), and differentiable at t > 0 if all Dini derivatives at t
exists and are equal. At t = 0, differentiability is defined to be differentiability from
the right.

Theorem 2.8. The Brownian sample path Wt(ω) is nowhere differentiable for a.e.
ω. More precisely, the set

(2.3.6) {ω ∈ Ω : ∀t ∈ [0,∞), either D+Wt(ω) =∞ or D+Wt(ω) = −∞}
contains an event A ∈ F with P (A) = 1.

Proof. By scaling, it is enough to consider t ∈ [0, 1]. For fixed integers j, k ≥ 1,
consider the set

(2.3.7) Ajk =
⋃

t∈[0,1]

⋂
h∈[0,1/k]

{ω ∈ Ω : |Wt+h(ω)−Wt(ω)| ≤ jh}.

Observe that
(2.3.8)

∞⋃
j,k=1

Ajk = {ω ∈ Ω : −∞ < D+Wt(ω) ≤ D+Wt(ω) <∞ for some t ∈ [0, 1]}

Since for any ω in this set, there exists some t ∈ [0, 1] and j ≥ 1 such that as h→ 0
we have

(2.3.9)

∣∣∣∣Wt+h(ω)−Wt(ω)

h

∣∣∣∣ ≤ j.
So if for every j, k we can find an event C ∈ F such that P (C) = 0 and Ajk ⊂ C,
the complement of C will will prove the theorem.

To that end, fix a sample path ω ∈ Ajk. So there exists a t ∈ [0, 1] such that
|Wt+h(ω) −Wt(ω)| ≤ jh for every 0 ≤ h ≤ 1/k. Take an integer n ≥ 4k. Then
there exists an integer 1 ≤ i ≤ n, such that (i− 1)/n ≤ t ≤ i/n, and it follows that
(2.3.10)

|W(i+1)/n(ω)−Wi/n(ω)| ≤ |W(i+1)/n(ω)−Wt(ω)|+|Wi/n(ω)−Wt(ω)| ≤ 2j

n
+
j

n
=

3j

n
.

The last inequality follows from the fact that for ν = 1, 2, 3 we have (i+ ν)/n− t ≤
(ν + 1)/n ≤ 1/k.

Now observe that from this last fact, ω ∈ Ajk gives information about the size
of the Brownian increment not only over the interval [i/n, (i+ 1)/n], but over the
neighboring intervals [(i+ 1)/n, (i+ 2)/n] and [(i+ 2)/n, (i+ 3)/n]. Indeed, by the
same argument we have

(2.3.11) |W(i+2)/n(ω)−W(i+1)/n(ω)| ≤ 3j

n
+

2j

n
=

5j

n
,

(2.3.12) |W(i+3)/n(ω)−W(i+2)/n(ω)| ≤ 4j

n
+

3j

n
=

7j

n
.
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So if we define

(2.3.13) C
(n)
i :=

⋂
ν=1,2,3

{
ω ∈ Ω : |W(i+ν)/n(ω)−W(i+ν−1)/n(ω)| ≤ 2ν + 1

n
j
}
,

we see that Ajk ⊂ ∪ni=1C
(n)
i for each n ≥ 4k.

On the other hand, after Brownian scaling

(2.3.14) Zν :=
√
n(W(i+ν)/n(ω)−W(i+ν−1)/n(ω)), ν = 1, 2, 3

are independent standard normal variables, and one checks that P (|Zν | ≤ ε) ≤ ε
for any ε > 0. So then for i = 1, 2, . . . , n we have

(2.3.15) P (C
(n)
i ) ≤

( 3j

n1/2

)( 5j

n1/2

)( 7j

n1/2

)
=

105j3

n3/2
,

and

(2.3.16) Ajk ⊂ C :=

∞⋂
n=4k

n⋃
i=1

C
(n)
i ∈ F

and P (C) ≤ infn≤4k P (∪ni=1C
(n)
i ) = 0. �

Exercise 3. Modifying the above proof, show that with probability one, the Brow-
nian sample path is not Hölder continuous of exponent γ > 1/2, hence nowhere
differentiable. On the other hand, using the Kolmogorov-Čentsov lemma it is easy
to show that Brownian motion is Hölder continuous with exponent γ < 1/2.

2.4. On the construction of Brownian motion. (Refer to [D], [KS] for the full
proof.) The initial construction of the measure νx satisfies (a) and (b) of Brownian
motion but not continuity (c). The idea for fixing this is to construct a similar
function, also denoted νx such that

(2.4.1) νx(ω : ω(0) = x} = 1

and

(2.4.2) νx({ω : ω(ti) ∈ Ai, i = 1, . . . , n) = µx,t1,...,tn(A1 × · · · ×An)

with µx,t1,...,tn defined in class. From the construction of µx,t1,...,tn we see that
properties (a) and (b) again hold, and it remains to check for (c). To do this, we
have to first show Claim 1:

(2.4.3) νx(ω : Q2 → R, uniformly continuous on Q2 ∩ [0, T ]) = 1

Any uniformly continuous function ω on Q2∩ [0, T ] has a unique continuous exten-
sion to [0, T ] by

(2.4.4) ω(t) := lim
s∈Q2→t

ω(s)

for any t ∈ [0, T ]. Let ψ be this function, so

(2.4.5) ψ : Ω2 → C

where C is the set of continuous functions ω : [0,∞) → R. It is a measurable
function, so we can define a probability measure on (C,C ) where C is the σ-algebra
generated by the sets {ω : ω(t) ∈ At,≥ 0} for any Borel set A ⊂ R (the smallest
σ-algebra that makes each ω measurable).

(2.4.6) Px := νx ◦ ψ−1

which will gives us (c).
As usual, take B0(ω) = 0 and T = 1. Then to prove uniform continuity, we want

to show Claim 2 (Kolmogorov-Čentsov), which gives

(2.4.7) |Bq −Br| ≤ Cω|q − r|γ
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for all q, r ∈ Q2∩ [0, 1] and γ < α/β, where α, β > 0. The proof looks at the dyadic
subdivisions Gn, for which Chebyshev’s inequality gives

(2.4.8) P (Gcn)� 2−nλ

where λ = α− βγ > 0.
For the bound on Gn, we start with Claim 3 on the set HN for a fixed N > 0:

(2.4.9) |Bq −Br| ≤
3

1− 2−γ
|q − r|γ

for q, r ∈ Q2 ∩ [0, 1] with |q − r| < 2−N . This was proved in class. To apply this,
we use the Borel-Cantelli lemma on the fact that

∑
P (GcN ) < ∞, to get that for

any fixed A > 0, there exists δω such that

(2.4.10) |Bq −Br| ≤ A|q − r|γ

for any q, r ∈ Q2 with |q − r| < δω.
Now to prove Claim 2, we extend the latter to all q, r in Q2∩[0, 1] by subdividing

[q, r] into intervals of length less than δω and applying the triangle inequality, and
we are done.

3. Stochastic calculus

3.1. Quadratic variation. We have already seen Brownian motion is not differ-
entiable in the usual sense. This discussion is to explain why stochastic integration
also cannot be defined in the old way, the first variation being unbounded, and how
to fix it using bounded quadratic variation.

Definition 3.1. Here is the definition for a p-variation, p > 0, with p = 2 being
the quadratic variation. Let X = {Xt; 0 ≤ t < ∞} be a process. Fix t > 0, let
Π = {t0, t1, . . . , tn} be a partition of [0, t] with 0 = t0 ≤ t1 ≤ · · · ≤ tn = t. Define
the p-th variation of X over the partition Π to be

(3.1.1) V
(p)
t (Π) =

n∑
k=1

|Xtk −Xtk−1
|p.

Now define the mesh of the partition Π to be ||Π|| = max1≤k≤n |tk − tk−1|. If

V
(2)
t (Π) converges (in some sense) as ||Π|| → 0, then the limit can be called the

quadratic variation 〈X〉t of X on [0, t].

Example 3.2. Let X = {Xt,Ft, 0 ≤ t <∞} be a continuous martingale such that
X0 = 0 a.s., and EX2

t < ∞ for every t ≥ 0 (i.e., X is square-integrable). Then
X2 = {X2

t ,Ft; 0 ≤ t <∞} is a nonnegative submartingale, and hence has a unique
Doob-Meyer decomposition

(3.1.2) X2
t = Mt +At, 0 ≤ t <∞

where M = {Mt,Ft; 0 ≤ t <∞} is a continuous martingale and A = {At,Ft; 0 ≤
t <∞} is an increasing process. Then for partitions Π of [0, t], we have

(3.1.3) lim
||Π||→0

V
(2)
t (Π) = At

in probability, and we may define 〈X〉t = At in this case. In other words, for every
ε, η > 0, there exists a δ > 0 such that ||Π|| < δ implies

(3.1.4) P (|V (2)
t (Π)− 〈X〉t| > ε) < η.

Exercise 4. Let X = {Xt,Ft; 0 ≤ t < ∞} be a continuous process such that for
every fixed t > 0 and some p > 0

(3.1.5) lim
||Π||→0

V
(p)
t (Π) = Lt (in probability)
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where Lt is some random variable taking values in [0,∞) a.s. Show that for all q > p

lim||Π||→0 V
(q)
t (Π) = 0 in probability, and for 0 < q < p, lim||Π||→0 V

(q)
t (Π) =∞ in

probability on the event {Lt > 0}.

The conclusion is that the unbounded first variation of continuous square-integrable
martingales M means they cannot be differentiable, and it is impossible to define

integrals of the form
∫ t

0
Xs(ω) dMs(ω) for (almost) every ω ∈ Ω in the Riemann-

Stieltjes sense.

3.2. Construction of the stochastic integral. Let M = {Mt,Ft; 0 ≤ t ≤ ∞}
be a square integrable martingale on (Ω,F , P ), such that the filtration {Ft} sat-
isfies Ft = ∩ε>0Ft+ε for all t, and that F0 contains all sets with P -measure zero.
Define a measure on ([0,∞)× Ω,B([0,∞))⊗F ) by

(3.2.1) µM (A) = E[

∫ ∞
0

1A(t, ω)d〈M〉t(ω)].

Call two Ft-adapted processes X = {Xt,Ft; 0 ≤ t ≤ ∞}, Y = {Yt,Ft; 0 ≤ t ≤ ∞}
equivalent ifXt(ω) = Yt(ω) µM -a.e. (t, ω), meaning almost everywhere on [0,∞)×Ω
with respect to the measure µM . This gives an equivalence relation.

3.2.1. Spaces of processes. Define the L2-norm for X as a function of (t, ω) re-
stricted to [0, T ]× Ω under the measure µM ,

(3.2.2) [X]2T := E[

∫ T

0

X2
t d〈M〉t],

when it exists. We have [X − Y ]T = 0 for all T > 0 if and only if X and Y are
equivalent. Now let L be the set of equivalence classes of all measurable, {Ft}-
adapted processes X such that [X]T < ∞ for all T > 0. Define a metric on L
by

(3.2.3) [X] :=

∞∑
n=1

2−n min(1, [X]n).

If the function t 7→ 〈M〉t(ω) is absolutely continuous for P -a.e. ω, we would be

able to construct the integral
∫ T

0
XtdMt for all X ∈ L and T ≥ 0. But without

this condition, we have to restrict ourselves to a smaller subspace.
Let L ∗∗ be the subspace of processes X ∈ L that are progressively measurable

with respect to the filtration {Ft}, i.e., the mapping (t, ω) 7→ Xt(ω) with (t, ω) ∈
([0, t]× Ω,B([0, t])⊗F ) is measurable for all t ≥ 0.

Let L ∗ be the subspace of processes X ∈ L that are predictable with respect
to the filtration {Ft}, i.e., the mapping (t, ω) 7→ Xt(ω) is measurable with respect
to the predictable σ-algebra, which is the σ-algebra on [0,∞)×Ω generated by the
sets {0} ×A with A ∈ F0 and {(s, t]} ×A′ with A′ ∈ Fs, s < t.

Let L 0 be the class of all simple processes. A process X = {Xt,Ft; 0 ≤ t <∞)
is called simple if there exists a strictly increasing sequence of real numbers {tn}
with t0 = 0 and limn→∞ tn = ∞, and a sequence of random variables {ξn} with
supn≥0 |ξ(ω)| ≤ C <∞ for every ω, such that ξn is Ftn -measurable for every n ≥ 0
and

(3.2.4) Xt(ω) = ξ0(ω)1{0}(t) +

∞∑
i=0

ξi(ω)1(ti,ti+1](t)

for 0 ≤ t <∞, ω ∈ Ω. We have the chain of inclusions L 0 ⊂ L ∗ ⊂ L ∗∗ ⊂ L .

Definition 3.3. Let X ∈ L 0. The stochastic integral is defined to be the martin-
gale transform with respect to M ,

(3.2.5) It(X) :=

n−1∑
i=0

ξi(Mti+1 −Mti) + ξn(Mt −Mtn) =

∞∑
i=0

ξi(Mt∧ti+1 −Mt∧ti),
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for 0 ≤ t <∞. Here n is the unique integer for which tn ≤ t < tn+1. The definition
shall be extended to integrands X ∈ L by successive approximations using simple
processes.

Proposition 3.4 (KS 3.2.6). If t 7→ 〈M〉t(ω) is absolutely continuous with respect
to Lebesgue measure for P -a.e. ω ∈ Ω, then L 0 is dense in L with respect to the
metric [·] defined above.

Proposition 3.5 (KS 3.2.8). L 0 is dense in L ∗∗ with respect to the metric [·].

The following properties of simple processes and their integrals can be found in
[KS] pp.137–138. Refer there for the proof.

Lemma 3.6. Let X,Y ∈ L0, and 0 ≤ s < t <∞. Then

(1) I0(X) = 0 a.s. P
(2) I(aX + bY ) = aI(X) + bI(Y )), a, b ∈ R
(3) E[It(X)|Fs] = Is(X) a.s. P

(4) E[It(X)]2 = E[
∫ t

0
X2
ud〈M〉u]

(5) ||I(X)|| = [X], where ||X|| :=
∑∞
n=1 2−n min(1, ||X||n) and ||X||2n :=

E[X2
n].

(6) E[(It(X)− Is(X))2|Fs] = E[
∫ t
s
X2
ud〈M〉u|Fs] a.s. P

Proof. First, note that (1) and (2) are clear. (6) implies (4) and (5) by setting
s = 0. (3) implies that I(X) = {It(X),Ft; 0 ≤ t <∞} is a continuous martingale.
(6) implies that it is square-integrable.

Now to prove (3), observe that for any i ≥ 1,

(3.2.6) E[ξi(Mt∧ti+1 −Mt∧ti)|Fs] = ξi(Mt∧ti+1 −Mt∧ti), P -a.s..

we have to check the three cases s ≤ ti, ti < s ≤ ti+1, ti+1 < s. In the first case, we
condition twice using the fact that Fti ⊃ Fs,

(3.2.7) E[E[ξi(Mt∧ti+1 −Mt∧ti)|Fti ]|Fs] = E[ξiE[Mt∧ti+1 −Mt∧ti |Fti ]|Fs] = 0

by the stopping time. In the second case, use the same idea on the first summand
below

E[ξi(Mt∧ti+1
−Mt∧s)− ξi(Mt∧s −Mt∧ti)|Fs]

=E[E[ξi(Mt∧ti+1
−Mt∧s)|Fti+1

]|Fs] + ξiE[Mt∧s −Mt∧ti |Fs] = ξi(Ms −Ms∧ti)

and the third case is straightforward since Fti ⊂ Fs.
For (6), choose m,n such that tm−1 ≤ s < tm and tn ≤ t < tn+1, and

E[(It(X)− Is(X))2|Fs]

= E[{ξm−1(Mtm −Ms) +

n−1∑
i=m

ξi(Mti+1 −Mti) + ξn(Mt −Mtn)}2|Fs]

= E[ξ2
m−1(Mtm −Ms)

2 +

n−1∑
i=m

ξ2
i (Mti+1

−Mti)
2 + ξ2

n(Mt −Mtn)2|Fs]

= E[ξ2
m−1(〈M〉tm − 〈M〉s) +

n−1∑
i=m

ξ2
i (〈M〉ti+1

− 〈M〉ti) + ξ2
n(〈M〉t − 〈M〉tn)|Fs]

= E[

∫ t

s

X2
ud〈M〉u|Fs]

where in the second equality we use the vanishing of cross-terms, below in Exam-
ple 3.9., and for the third equality, E[M2

t ] = E[〈M〉t] for any square integrable
martingale M with Mt = 0. �
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The square-integrable continuous martingales forms a complete metric space M c
2

under the metric || · || above. Given X ∈ L ∗, by the density of L 0 in L there
exists a sequence {X(n)} ⊂ L 0 such that [X(n) −X]→ 0 and by (5) we can show
that {I(X(n))} is a Cauchy sequence in M c

2 . One checks that the limit I(X) again
lies in L ∗, and that it is well-defined. This should also be done for X ∈ L ∗∗.

Definition 3.7. Let X ∈ L ∗. Then the stochastic integral of X with respect
to the martingale M ∈ M c

2 is the unique, square-integrable martingale I(X) =
{It(X),Ft; 0 ≤ t < ∞} such that limn→∞ ||I(X(n) − X|| = 0 for every sequence
{X(n)} ⊂ L 0 such that limn→∞[X(n) −X] = 0. We write

(3.2.8) It(X) =

∫ t

0

XsdMs, 0 ≤ t <∞.

Example 3.8. Let X be a constant process with Xt = c for all t, and take M to
be Brownian motion B. Then for any partition Π = {t0, . . . , tn} of [0, t], we get
straightaway the integral

(3.2.9) It(X) =

∞∑
i=0

c(Bt∧ti+1 −Bt∧ti) = c(Bt −B0).

Taking standard Brownian motion so that B0 = 0, and c = 1 we have

(3.2.10)

∫ t

0

dBs = Bt.

Example 3.9. Now let X = M = B be standard Brownian motion. Let Πn =
{t0, . . . , tn} be a partition of [0, t] with 0 = t0 < t1 < · · · < tn = t. Approximate

the stochastic integral
∫ t

0
Bs dBs by the sum

(3.2.11) V (Πn) =

n−1∑
n=0

Bti(Bti+1 −Bti) =

n−1∑
i=0

1

2
(B2

ti+1 −B2
ti − (Bti+1 −Bti)2).

Cancelling terms, the sum reduces to

(3.2.12)
1

2
B2
tn −

1

2

n−1∑
i=0

(Bti+1
−Bti)2,

and the last sum converges in L2 to t. To see this, show (exercise) that

(3.2.13) E

[
1

2

n−1∑
i=0

(Bti+1 −Bti)2 − t

]2

=
1

2

n−1∑
i=0

E[Bti+1 −Bti)2 − (ti+1 − ti)],

and that this last quantity is bounded by C 1
2

∑n−1
i=0 (ti+1− ti)] ≤ Ct||Π||. This uses

the properties

(1) If Bs − Bt, 0 ≤ s < t is normally distributed with mean 0 and variance
t − s, then for each positive integer n there is a constant Cn such that
E[Bt −Bs]2n ≤ Cn|t− s|n.

(2) If X is a square-integrable martingale and 0 ≤ s < t ≤ u < v then we have
E[(Xv −Xu)(Xt−Xs)] = E{E[Xv −Xu|Fs](Xt−Xs)} = 0, i.e., the cross
product terms vanish.

Thus we get

(3.2.14)

∫ t

0

Bs dBs =
1

2
B2
t +

1

2
t.

Exercise 5. Fill in the gaps in the last example.
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3.3. A characterization of the integral. Suppose M = {Mt,Ft; 0 ≤ t < ∞}
and N = {Nt,Ft; 0 ≤ t < ∞} belong to M c

2 , and take X ∈ L ∗(M), Y ∈ L ∗(N).

Then IMt (X) =
∫ t

0
XsdMs and INt (Y ) =

∫ t
0
YsdNs are also in M c

2 , and from the
proof of Lemma 3.6(iii), we know that

(3.3.1) 〈IMt (X)〉 =

∫ t

0

X2
ud〈M〉u, 〈INt (Y )〉 =

∫ t

0

Y 2
u d〈N〉u.

We want to establish the cross variation formula

(3.3.2) 〈IMt (X), INt (Y )〉 =

∫ t

0

XuYud〈M,N〉u, t ≥ 0, P -a.s..

If X,Y are simple, this follows the computation as in the proof of Lemma 3.6(iii)
that for 0 ≤ s < t <∞,

(3.3.3) E[(IMs (X)− INs (Y ))(IMt (X)− INt (Y ))|Fs] = E

[∫ t

s

XuYud〈M,N〉u
]

P -a.s., which is equivalent to (3.3.2). We extend to the general case in several steps.
The first is the following:

Proposition 3.10 (Kunita-Wanabe). Let M,N ∈M c
2 , X ∈ L ∗(M), Y ∈ L ∗(N).

Then a.s. we have

(3.3.4)

∫ t

0

|XuYu|dξ̌u ≤
(∫ t

0

X2
ud〈M〉u

)1/2(∫ t

0

Y 2
u d〈N〉u

)1/2

, 0 ≤ t <∞,

where ξ̌s denote the total variation of the process ξ = 〈M,N〉 on [0, u].

Proof sketch. ξ̌ is absolutely continuous with respect to ϕ(ω) := 1
2 (〈M〉+ 〈N〉)(ω)

for every ω ∈ Ω̂ with P (Ω̂) = 1, and for every such ω the Radon-Nikodym theorem
implies the existence of functions fi(·, ω) : [0,∞)→ R, i = 1, 2, 3, such that

(3.3.5) 〈M〉t(ω) =

∫ t

0

f1(s, ω)dϕs(ω), 〈N〉t(ω) =

∫ t

0

f2(s, ω)dϕs(ω)

(3.3.6) ξt(ω) = 〈M,N〉t(ω) =

∫ t

0

f3(s, ω)dϕs(ω), 0 ≤ t <∞.

Consequently, for α, β ∈ R and ω ∈ Ω̃αβ ⊂ Ω̂ such that P (Ω̃αβ) = 1, we have

0 ≤ 〈αM + βN〉t(ω)− 〈αM + βN〉s(ω)(3.3.7)

=

∫ t

0

(α2f1(s, ω) + 2αβf3(s, ω) + β2fs(s, ω))dϕs(ω), 0 ≤ s < t <∞.(3.3.8)

This can happen only if for every ω ∈ Ω̃αβ , there exists a set Tαβ(ω) ∈ B([0,∞))
with

∫
Tαβ(ω)

dϕt(ω) = 0 and such that

(3.3.9) α2f1(s, ω) + 2αβf3(s, ω) + β2fs(s, ω) ≥ 0

holds for every t 6∈ Tαβ(ω). Now let Ω̃ = ∩α,β∈QΩ̃αβ , T (ω) = ∪α,β∈QTαβ(ω) so
that

(3.3.10) P (Ω̃) = 1,

∫
T (ω)

dϕt(ω) = 0, ω ∈ Ω̃.

Fix ω ∈ Ω̃, then the last inequality holds for every t 6∈ T (ω) and every α, β ∈ Q,
and thus also for every α, β ∈ R. In particular,
(3.3.11)
α2|Xt(ω)|2f1(s, ω) + 2α|Xt(ω)Yt(ω)|f3(s, ω) + |Yt(ω)|2|β2fs(s, ω) ≥ 0, t 6∈ T (ω).

Integrating with respect to dϕt, we obtain a.s.

(3.3.12) α2

∫ t

0

|Xu|2〈M〉u + 2α

∫ t

0

|XsYs|dξ̌ +

∫ t

0

|Yt|2|〈N〉u ≥ 0, 0 ≤ t <∞,
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and the desired result follows by minimization over α. �

Lemma 3.11. If M,N ∈ M c
2 , X ∈ L ∗(M), and {X(n)}∞n=1 ⊂ L ∗(M) is such

that for some T > 0,

(3.3.13) lim
n→∞

∫ T

0

|X(n)
u −Xu|d〈M〉u = 0, P -a.s.

then

(3.3.14) lim
n→∞

〈I(X(n)), N〉t = 〈I(X), N〉t, P -a.s., 0 ≤ t ≤ T.

Proof. Using the property that |〈M,N〉|2 ≤ 〈M〉〈N〉, we have for 0 ≤ t ≤ T ,
(3.3.15)

|〈I(X(n))− I(X), N〉t|2 ≤ 〈I(X(n))− I(X)〉t〈N〉t ≤
∫ T

0

|X(n)
u −Xu|2d〈M〉u · 〈N〉T .

�

Lemma 3.12. If M,N ∈M c
2 , X ∈ L ∗(M), then

(3.3.16) 〈IM (X), N〉t =

∫ t

0

Xud〈M,N〉u, P -a.s., 0 ≤ t <∞.

Proof. From [KS, Lemma 3.2.7] there exists a sequence {X(n)}∞n=1 of simple pro-
cesses such that

(3.3.17) sup
T>0

lim
n→∞

E

∫ T

0

|X(n)
u −Xu|2d〈M〉u = 0.

Consequently for each T > 0 there is a subsequence {X̃(n)}∞n=1 such that

(3.3.18) lim
n→∞

E

∫ T

0

|X̃(n)
u −Xu|2d〈M〉u = 0 a.s..

But then for simple processes we can conclude that

(3.3.19) 〈IM (X̃(n)), N〉t =

∫ t

0

X̃(n)
u d〈M,N〉u, P -a.s., 0 ≤ t ≤ T.

Then letting n→∞ we obtain the result from the previous lemma and the Kunita-
Watanabe inequality. �

Proposition 3.13. Let M,N ∈M c
2 , X ∈ L ∗(M), Y ∈ L ∗(N). Then (3.3.2) and

(3.3.3) hold.

Proof. The previous lemma tells us that d〈M, IN (Y )〉u = Yud〈M,N〉u. Replacing
N by IN (Y ), in the previous lemma, we have
(3.3.20)

〈IM (X), IN (Y )〉t =

∫ t

0

Xud〈M, IN (Y )〉u =

∫ t

0

XuYud〈M,N〉u P -a.s., 0 ≤ t <∞.

�

Exercise 6. Suppose M = {Mt,Ft; 0 ≤ t < ∞} and N = {Nt,Ft; 0 ≤ t <
∞} belong to M c

2 , and take X ∈ L ∗∞(M), Y ∈ L ∗∞(N). Then the martingales
IM (X), IN (Y ) are uniformly integrable and have last elements IM∞ (X), IN∞(Y ), the
cross variation 〈IM (X), IN (Y )〉t converges a.s. as t→∞, and

(3.3.21) E[IM∞ (X)IN∞(Y )] = E〈IM (X), IN (Y )〉∞ = E

∫ ∞
0

XtYtd〈M,N〉t.

In particular,

(3.3.22) E

(∫ ∞
0

XtdMt

)2

= E

∫ ∞
0

X2
t d〈M〉t.
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3.4. Itô’s formula. A continuous semimartingale X = {Xt,Ft; 0 ≤ t <∞} is an
adapted process which has the decomposition P -a.s.

(3.4.1) Xt = X0 +Mt + Ct = X0 +Mt + (A+
t −A−t ), 0 ≤ t <∞

where M = {Mt,Ft; 0 ≤ t <∞} is a local martingale and A± = {A±t ,Ft; 0 ≤ t <
∞} are continuous, nondecreasing, adapted processes with A±0 = 0 P -a.e. One can
show that this decomposition is unique.

Theorem 3.14. Let f be a real-valued function in C2(R), and X = {Xt,Ft; 0 ≤
t <∞} a continuous semimartingale. Then P -a.s.,
(3.4.2)

f(Xt) = f(X0)+

∫ t

0

f ′(Xs)dMs+

∫ t

0

f ′(Xs)dCs+
1

2

∫ t

0

f ′′(Xs)d〈M〉s, 0 ≤ t <∞.

The first integral is the stochastic integral, whereas the second two are the usual
Lebesgue-Stieltjes integrals.

The proof of this is in [KS, 3.3]. We will give a proof of the special case where
X is Brownian motion, following [D, 7.6]. The claim then is that P -a.s.,

(3.4.3) f(Bt)− f(B0) =

∫ t

0

f ′(Bs)dBs +
1

2

∫ t

0

f ′′(Bs)ds, 0 ≤ t <∞.

Proof. (Sketch) We first make a reduction: define the stopping time Tn = inf{t ≥
0 : |Bt| ≥ n or 〈B〉t ≥ n} for any n ≥ 1. Also set Tn = ∞ if the set is empty.
Certainly Tn is nondecreasing and tends to infinity as n grows large. Thus if we
can establish Itô’s formula for the stopped process Bt∧Tn , t ≥ 0, then we obtain the
desired result by letting n → ∞. So we may assume that Bt(ω) and 〈B〈t(ω) are
bounded on [0,∞)×Ω, and hence we may assume also that f, f ′, f”” are bounded.

Let Πn be a partition 0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
k = t of the interval [0, t], such

that max1≤i≤k(n) t
(n)
i − t(n)

i−1 → 0 as n → ∞. An application of the mean value
theorem and Taylors theorem implies that for any real a < b there is a c ∈ (a, b)
such that

(3.4.4) f(b)− f(a) = (b− a)f ′(a) +
1

2
(b− a)2f ′′(c).

(Can you see why?) Applying the partitions, we get

f(Bt)− f(B0) =

k−1∑
i=0

f(B
t
(n)
i

)− f(B
t
(n)
i−1

)

=

k−1∑
i=0

f ′(B
t
(n)
i−1

)(B
t
(n)
i+1
−B

t
(n)
i

) +
1

2

k−1∑
i=0

f ′′(c
t
(n)
i ,t

(n)
i+1

)(B
t
(n)
i+1
−B

t
(n)
i

)2.

So we want to show that the two sums converge a.s. to the two integrals respectively.
The process

(3.4.5) Ys(ω) := f ′(Bs(ω)), 0 ≤ s < t, ω ∈ Ω

lies in L ∗, i.e., it is an adapted, continuous and bounded process, so we shall
approximate it by the simple process

(3.4.6) Y Πn
s (ω) := f ′(X0(ω))1{0}(s) +

k−1∑
i=0

f ′(X
t
(n)
i

(ω))1
(t

(n)
i ,t

(n)
i+1]

(s).

Indeed, since Bt is uniformly continuous, we have by the bounded convergence
theorem

(3.4.7) E[I2
t (Y Πn − Y )] = E

[ ∫ t

0

|Y Πn − Y |2d〈M〉s
]
→ 0
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as ||Πn|| → 0. It follows then that

(3.4.8)

k−1∑
i=0

f ′(B
t
(n)
i

)(B
t
(n)
i+1
−B

t
(n)
i

) =

∫ t

0

Y Π
s dMs →

∫ t

0

YsdMs

in quadratic mean.

For the second term, let c
(n)
i = c

t
(n)
i ,t

(n)
i+1

. We want to show that

(3.4.9)

k−1∑
i=0

f ′′(c
(n)
i )(B

t
(n)
i+1
−B

t
(n)
i

)2 →
∫ t

0

f ′′(Bs)d〈B〉s

in L1(Ω,F , P ) as ||Πn|| → 0. Define the function g
(n)
s to be the function taking

values c
(n)
i on the interval (t

(n)
i , t

(n)
i+1], and also As =

∑
t
(n)
i+1≤s

(B
t
(n)
i+1
−B

t
(n)
i

)2. Then

we can write

(3.4.10)

k−1∑
i=0

f ′′(c
(n)
i )(B

t
(n)
i+1
−B

t
(n)
i

)2 =

∫ t

0

g(n)
s dAs.

We know that As converges a.e. to the quadratic variation 〈B〉s, and by the conti-

nuity of f ′′ we have g
(n)
sn → f ′′(Bs) as n→∞, for any sn → s.

Then the convergence now follows from [D, Lemma 7.6.2]. Namely, If there
exists (i) finite measure µn on [0, t converging weakly to a finite measure µ, and
(ii) a sequence of functions gn with |gn| ≤M and such that gn(sn)→ g(s) for any
sequence sn in [0, t] converging to s, then as n→∞ one has

(3.4.11)

∫ t

0

gndµn →
∫ t

0

gdµ.

�

We also need the formula for functions f(t, x). We might as well state the formula
for d-dimensional Brownian motion:

Theorem 3.15. Let f(t, x) : [0,∞) × Rd → R be a C1,2 function. Then for all
t ≥ 0 we have P -a.s.,
(3.4.12)

f(t, Bt)− f(0, B0) =

∫ t

0

∂f

∂t
(s,Bs)ds+

d∑
i=1

∫ t

0

∂f

∂xi
(Bs)dB

i
s +

1

2

d∑
i=1

∫ t

0

∂2f

∂x2
i

(Bs)ds.

Proof. See [D, Theorem 7.6.7], and [KS, 3.6] for the statement for general continu-
ous local martingales. �

Corollary 3.16. Let ∆ =
∑d
i=1 ∂

2/∂x2
i be the Laplace operator. Then

(3.4.13) f(Bt) = f(B0) +

∫ t

0

∇f(Bs)dBs +
1

2

∫ t

0

∆f(Bs)ds.

Now let’s look at some examples.

Example 3.17. Taking f = x recovers Bt−B0 =
∫ t

0
dBs. Taking f = x2, we have

(3.4.14) B2
t −B2

0 = 2

∫ t

0

Bs dBs + t.

as before.

Example 3.18. Let’s integrate

(3.4.15)

∫ t

0

s dBs.
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From calculus one might guess the answer tBt should be involved. So let’s define
f(t, Bt) = tBt. Then using Itô’s formula for f(t, Bt),

(3.4.16) tBt =

∫ t

0

Bsds+

∫ t

0

sdBs,

or

(3.4.17)

∫ t

0

sdBs = tBt −
∫ t

0

Bsds.

Exercise 7 (Integration by parts). Let X = {Xt,Ft; 0 ≤ t < ∞} and Y =
{Yt,Ft; 0 ≤ t <∞} be continuous (square-integrable) martingales. Prove that

(3.4.18)

∫ t

0

XsdYs = XtYt −X0Y0 −
∫ t

0

YsdXs − 〈X,Y 〉t, 0 ≤ t <∞

where 〈X,Y 〉t is the cross-variation 1
4 〈X + Y 〉t − 1

4 〈X − Y 〉t.

This shows one difference from the familiar integration formula, where the cross-
variation produces a correction term. The correction term can be compensated
for by accounting for it in the definition of the stochastic integral, as is with the
Fisk-Stratanovich integral. It is defined for a smaller-class of integrands than the
Itô integral, but is a useful tool in modeling because it is more robust under pertur-
bations. Let X,Y be continuous semimartingales. The Fisk-Stratanovich integral
of X with respect to Y can be defined as:

(3.4.19)

∫ t

0

Ys ◦ dXs :=

∫ t

0

YsdMs +

∫ t

0

Ysd(A+ −A−)s +
1

2
〈M,N〉t,

for 0 ≤ t <∞. The first integral on the right-hand side is an Itô integral.

Exercise 8 (Exponential martingales). Let X = {Xt,Ft; 0 ≤ t < ∞} be a pro-
gressively measurable process such that for all T ∈ [0,∞), we have

(3.4.20) P

[∫ T

0

X2
t d〈M〉t <∞

]
= 1.

Then define for 0 ≤ s < t <∞,

(3.4.21) ζst (X) :=

∫ t

s

XudBu −
1

2

∫ t

s

X2
udu

and ζt := ζ0
t (X). Let Zt = exp(ζt).

(1) Show that the process Z = {Zt,Ft; 0 ≤ t < ∞} is a supermartingale, and
a martingale if X is also a simple process.

(2) Show that Z satisfies the stochastic integral equation

(3.4.22) Zt = 1 +

∫ t

0

ZsXsdBs, 0 ≤ t <∞

by applying f(x) = ex to the semimartingale ζt. (Solution: First write

(3.4.23) f(ζt) = f(ζ0) +

∫ t

0

f ′(ζs)dMs +

∫ t

0

f ′(ζs)dBs +
1

2

∫ t

0

f ′′(ζs)d〈M〉s.

Now we have to use some facts from [KS]. The Z is a semimartingale with

(local) martingale part Mt =
∫ t

0
XsdBs and bounded variation part Ct =

− 1
2X

2
sds. Also, dMs = XsdBs. Then the result follows.)

Note that it is easier to prove the last formula using the differential form of Itô’s
formula.
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3.5. Martingale characterisation of Brownian motion. Recall that if B is a
d-dimensional standard Brownian motion, then 〈B(k), B(j)〉t = δkjt for 1 ≤ k, j ≤
d, 0 ≤ t <∞. It turns out that this property characterises Brownian motion among
continuous local martingales. The compensated Poisson process with intensity λ =
1 provides an example of a discontinuous square-integrable martingale with 〈M〉t =
t.

Theorem 3.19 (P. Lévy, 1948). Let X = {Xt = (X
(1)
t , . . . , X

(d)
t },Ft, 0 ≤ t <∞}

be a continuous adapted proces in Rd such that for every component 1 ≤ k ≤ d the

process Mt := X
(k)
t −X(k)

0 , 0 ≤ t < ∞ is a continuous local martingale relative to

{Ft} and 〈M (k),M (j)〉t = δkjt for 1 ≤ k, j ≤ d, 0 ≤ t <∞.
Then X is a d-dimensional Brownian motion.

Proof. We want to show that for 0 ≤ s < t, the random vector Xt−Xs is indepen-
dent of Fs and has the d-variate normal distribution with mean zero and covariance
matrix equal to (t − s) times the (d × d) identity. Using [KS, Lemma 2.6.13], it
suffices to prove that for each u ∈ Rd,

(3.5.1) E[ei(u·(Xt−Xs))|Fs] = e−1/2||u||2(t−s), P -a.s.

For a fixed u, the function f(x) = ei(u·x) satisfies

(3.5.2)
∂

∂xj
f(x) = iujf(x),

∂2

∂xj∂xk
f(x) = −ujukf(x).

Applying Itô’s formula to the real and imaginary parts of f(x), we obtain

(3.5.3) ei(u·Xt) = ei(u·Xs) + i

d∑
j=1

uj

∫ t

s

ei(u·Xu)dM (j)
u −

1

2

d∑
j=1

u2
j

∫ t

s

ei(u,Xu)du.

Since |f(x)| ≤ 1 for all x and 〈M (j)〉t = t, we have that M (j) ∈M c
2 . Thus the real

and imaginary parts of

{
∫ t

0

ei(u·Xs)dM (j)
s ,Ft; 0 ≤ t <∞}

belong to M c
s . Consequently, we have

(3.5.4) E

[∫ t

0

ei(u·Xs)dM (j)
s

∣∣∣Fs

]
= 0, P -a.s..

For any A ∈ Fs, we may multiply (3.5.3) by e−i(u·Xs)1A and take expectations to
obtain

(3.5.5) E[e−i(u·(Xt−Xs))1A] = P (A)− 1

2
||u||2

∫ t

s

E[e−i(u·(Xt−Xs))1A]du.

This integral equation for the deterministic function t 7→ E[e−i(u·(Xt−Xs))1A] is
readily solved to yield

(3.5.6) E[e−i(u·(Xt−Xs))1A] = P (A)e−1/2||u||2(t−s).

�

3.6. The Girsanov theorem. Here is the setup: Let W be a standard Brownian
motion, and X a predictable process. We define for 0 ≤ s < t <∞,

(3.6.1) ζst (X) :=

∫ t

s

XudWu −
1

2

∫ t

s

X2
udu,

and ζt(X) := ζ0
t (X). The process {exp(ζt(X)),Ft, 0 ≤ t <∞} is a supermartingale.

It is a martingale if X is a simple process. The Girsanov theorem shall give more
general conditions for which it is a martingale.
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In differential notation,

(3.6.2) dζt = XtdWt −
1

2
X2
t dt,

and computing formally we have (dζt)
2 = X2

t dt. Then Itô’s rule can be written as

(3.6.3) df(ζt) = f ′(ζt)dζt +
1

2
f ′′(ζt)(dζt)

2,

so that with f(x) = ex and Zt := exp(ζt(X)), we obtain

(3.6.4) dZt = ZtXtdWt −
1

2
Ztx

2
tdt+

1

2
Ztx

2
tdt = ZtXtdWt,

and taking into account the initial condition Z0 = 1, we then have the stochastic
integral equation

(3.6.5) Zt = 1 +

∫ t

0

ZsXsdWs, 0 ≤ t <∞.

3.6.1. Fix a probability space (Ω,F , P ) and a d-dimensional Brownian motion

W = {Wt = (W
(1)
t , . . . ,W

(d)
t ),Ft; 0 ≤ t < ∞} on it with P (W0 = 0) = 1.

Assume that the filtration {Ft} satisfies the usual conditions. Let X = {Xt =

(X
(1)
t , . . . , X

(d)
t ),Ft; 0 ≤ t < ∞}. be a vector of measurable, adapted processes

satisfying

(3.6.6) P

[∫ T

0

(X
(i)
t )2dt <∞

]
= 1, 1 ≤ i ≤ d, 0 ≤ T <∞.

Then for each i the stochastic integral IW
(i)

(X(i)) is defined, and is a continuous
local martingale. Define

(3.6.7) Zt(X) := exp

[
d∑
i=1

∫ t

0

X(i)
s dW (i)

s −
1

2

∫ t

0

||Xs||2ds

]
We have

(3.6.8) Zt(X) = 1 +

d∑
i=1

∫ t

0

Zs(X)X(i)
s dW (i)

s

which shows that Z(X) is a continuous local martingale with Z0(X) = 1.
If Z(X) is a martingale, then EZt(X) = 1, t ≥ 0, and for each T ≥ 0 we can

defined a probability measure P̃T on FT by

(3.6.9) P̃T (A) := E[1AZT (X)], A ∈ FT .

The martingale property shows that the family of probability measures {P̃T : 0 ≤
T <∞} satisfies the consistency condition P̃T (A) = P̃t(A), A ∈ Ft, 0 ≤ t ≤ T.

Theorem 3.20 (Girsanov). Assume that Z(X) above is a martingale. Define a

process W̃ = {W̃t = (W̃
(1)
t , . . . , W̃

(d)
t ),Ft; 0 ≤ t <∞} by

(3.6.10) W̃
(i)
t := W

(i)
t −

∫ t

0

X
(i)
t ds, 1 ≤ i ≤ d, 0 ≤ t <∞.

For each fixed T ∈ [0,∞), the process W is a d-dimensional Brownian motion

(Ω,FT , P̃T ).

Corollary 3.21. Let W = {Wt,Ft; 0 ≤ t <∞} be the coordinate mapping process
on Ω := C[0,∞)d so that FW

∞ = B(C[0,∞)d). Let P be the Weiner measure on
(Ω,FW

∞ ). Let X = {Xt,FW
t : 0 ≤ t < ∞} be a d-dimensional process satisfying

(3.6.6). If Z(X) is a martingale, then there is a unique probability measure P̃

satisfying (3.6.9) and W̃ is a d-dimensional Brownian motion on (Ω,FW
∞ , P̃ ).
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Proof. To see that W̃ is a Brownian motion on (Ω,FW
∞ , P̃ ), let 0 ≤ t1 < · · · < tn ≤ t

be given. We have then

(3.6.11) P̃ [(W̃
(1)
t , . . . , W̃

(d)
t ) ∈ A] = P̃t[(W̃

(1)
t , . . . , W̃

(d)
t ) ∈ A], A ∈ B(Rd).

The result then follows from the theorem. �

We will denote by ẼT (resp. E)̃ the expectation operator with respect to P̃T
(resp. P̃ ).

Lemma 3.22. Fix 0 ≤ T <∞ and assume that Z(X) is a martingale. If 0 ≤ s ≤
t ≤ Tand Y is an Ft-measurable random variable satisfying ẼT |Y | ≤ ∞, then we
have the Bayes’ rule:

(3.6.12) ẼT [Y |Fs] =
1

Zs(X)
E[Y Zt(X)|Fs], P - and P̃ -a.s..

Proof. Using the definition of ẼT , the definition of conditional expectation, and
the martingale property, we have for any A ∈ Fs:

ẼT

[
1A

1

Zs(X)
E[Y Zt(X)|Fs]

]
= E[1AE[Y Zt(X)|Fs]](3.6.13)

= E[1AY Zt(X)] = ẼT [1AY ](3.6.14)

�

Proposition 3.23. Fix 0 ≤ T < ∞ and assume that Z(X) is a martingale. If

M ∈M c,loc
T , then the process

(3.6.15) M̃t := Mt −
d∑
i=1

∫ t

0

X(i)
s d〈M,W (i)〉s, 0 ≤ t ≤ T

is in M̃ c,loc
T . If N ∈M c,loc

T and

(3.6.16) Ñt := Nt −
d∑
i=1

∫ t

0

X(i)
s d〈N,W (i)〉s, 0 ≤ t ≤ T,

then 〈M̃, Ñ〉t = 〈M,N〉t, 0 ≤ t ≤ T a.s. P and P̃T .

Proof. We consider only the case where M and N are bounded martingales with

bounded quadratic variations, and assume also that Zt(X) and
∑d
i=1

∫ t
0
(X

(j)
s )2ds

are bounded in t and ω. The general case can be reduced to this one by localization.
From the Kunita-Watanabe inequality,

(3.6.17)

∣∣∣∣∫ t

0

X(i)
s d〈M,W (i)〉s

∣∣∣∣2 ≤ 〈M〉t ∫ t

0

(X(i)
s )2ds,

so M̃ is also bounded. The integration by parts formula gives

(3.6.18) Zt(X)M̃t =

∫ t

0

Zu(X)dMu +

d∑
i=1

∫ t

0

M̃uX
(i)
u Zu(X)dW (i)

u

which is martingale under P . Therefore, we have from the previous lemma

(3.6.19) ẼT [M̃ |Fs] =
1

Zs(X)
E[M̃Zt(X)|Fs], P - and P̃ -a.s..
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for 0 ≤ s ≤ t ≤ T . It follows that M̃ ∈ M̃ c,loc. The change of variable formula also
implies

M̃tÑt − 〈M,N〉t =

∫ t

0

M̃udNu +

∫ t

0

ÑudMu(3.6.20)

−
d∑
i=1

[∫ t

0

[M̃uÑu − 〈M,N〉u]X(i)
u Zu(X)dW (i)

]
(3.6.21)

and

Zt(X)[M̃tÑt − 〈M,N〉t] =

∫ t

0

Zu(X)M̃udNu +

∫ t

0

Zu(X)ÑudMu

(3.6.22)

−
d∑
i=1

[∫ t

0

M̃uX
(i)
u d〈N,W (i)〉u +

∫ t

0

ÑuX
(i)
u d〈M,W (i)〉u

]
(3.6.23)

This last process is consequently a martingale under P , and so the lemma implies
that

(3.6.24) ẼT [M̃tÑt − 〈M,N〉t|Fs] = M̃sÑs − 〈M,N〉s
This proves that 〈M̃, Ñ〉t = 〈M,N〉t, 0 ≤ t ≤ T a.s. P̃T and P . �

Proof of Theorem 3.20. We show that the continuous process W̃ on (ω,FT , P̃T )
satisfies the hypotheses Lévy’s theorem. Setting M = W (j) in the proposition

above, we obtain M̃ = W̃ (j), so W̃ (j) ∈ M̃ c,loc
T . Setting N = W (k), we obtain

P̃T and P -a.s.,

(3.6.25) 〈W̃ (j), W̃ (k)〉t = 〈W (j),W (k)〉t = δjkt, 0 ≤ t ≤ T.

�

3.7. The Novikov condition. To use the Girsanov theorem, we need some con-
ditions under which the process Z(X) becomes a martingale. Define

(3.7.1) Tn := inf

{
t ≥ 0 : max

1≤i≤d

∫ t

0

(Zs(X)X(i)
s )2ds = n

}
,

then the stopped processes Zt∧Tn(X) are martingales. Consequently, we have

(3.7.2) E[Zt∧Tn |Fs] = Zs∧Tn , 0 ≤ s ≤ t, n ≥ 1

and using Fatou’s lemma we have E[Zt(X)|Fs] ≤ Zs, so Z(X) is always a super-
martingale and is a martingale if and only if

(3.7.3) E[Zt(X)] = 1, 0 ≤ t <∞

by [KS, 1.3.25].

Proposition 3.24. Let M = {Mt,Ft; 0 ≤ t < ∞} be in M c,loc. and define
Zt = exp(Mt − 1

2 〈M〉t), 0 ≤ t < ∞. If E[exp( 1
2 〈M〉t] < ∞ for all t then EZt =

1, 0 ≤ t <∞.

Proof. See [KS 3.5.12]. �

Corollary 3.25 (Novikov). Let W = {Wt = (W
(1)
t , . . . ,W

(d)
t ),Ft, 0 ≤ t < ∞} be

a d-dimensional Brownian motion, and let X = {Xt = (X
(1)
t , . . . , X

(d)
t ),Ft, 0 ≤

t <∞} be a vector of measurable, adapted processes satisfying (3.6.6). If

(3.7.4) E

[
exp

(
1

2

∫ T

0

||Xs||2ds

)]
<∞, 0 ≤ T <∞,

then Z(X) defined by (3.6.7) is a martingale.
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Corollary 3.26. The above corollary holds if (3.7.4) is replaced by the following
assumption: There exists a sequence of real numbers {tn} with 0 = t0 < t1 < · · · <
tn, and tn →∞ such that

(3.7.5) E

[
exp

(
1

2

∫ tn

tn−1

||Xs||2ds

)]
<∞, ∀n ≥ 1.

Proof. Let Xt(n) = (X
(1)
t 1[tn−1,tn)(t), . . . , X

(d)
t 1[tn−1,tn)(t)), so that Z(X(n)) is a

martingale by Corollary 3.25. In particular,

(3.7.6) E[Ztn(X(n))|Ftn−1
] = E[Ztn−1(X(n))] = 1

for all n ≥ 1. But then

(3.7.7) E[Ztn(X)] = E[Ztn−1
(X)E[Ztn(X(n))|Ftn−1

]] = E[Ztn−1
(X)],

and by induction on n we can show that E[Ztn(X)] = 1 holds for all n ≥ 1. Since
E[Zt(X)] is nonincreasing in t and tn →∞, we get EZt(X) = 1. �

Definition 3.27. Let C[0,∞)d be the space of continuous functions x : [0,∞) →
Rd. For 0 ≤ t < ∞, define Gt := σ(x(s) : 0 ≤ s ≤ t) and set G = G∞. A progres-
sively measurable functional on C[0,∞)d is a mapping µ : [0,∞)× C[0,∞)d → R
which has the property that for each fixed 0 ≤ t <∞, µ restricted to [0, t]×C[0,∞)d

is B([0, t])⊗ Gt/B(R)-measurable.

If µ = (µ(1), . . . , µ(d)) is a vector of progressively measurable functionals on
C[0,∞)d and W a d-dimensional Brownian motion on some (Ω,F , P ), then the
processes

(3.7.8) X
(i)
t (ω) := µ(i)(t,W (ω)), 0 ≤ t <∞, 1 ≤ i ≤ d,

are progressively measurable relative to {Ft}.

Corollary 3.28 (Beneš). Let the vector µ of progressively measurable functionals
on C[0,∞)d satisfy, for each 0 ≤ T <∞ and for some KT > 0, the condition

(3.7.9) ||µ(t, x)|| ≤ KT (1 + x∗(t)), 0 ≤ t ≤ T

where x∗(t) := max0≤s≤t ||x(s)||. Then with Xt = (X
(1)
t , . . . , X

(d)
t ) defined by

(3.7.8), Z(X) of (3.6.7) is a martingale.

Proof. If, for arbitrary T > 0, we can find {t0, . . . , tn}, n = n(T ) such that 0 = t0 <
· · · < tn = T and (3.7.5) holds for 1 ≤ n ≤ n(T ), then we can construct a sequence
{tn} satisfying the previous corollary. Thus, fix T > 0. We have from (3.7.8) and
(3.7.9) that whenever 0 ≤ tn−1 < tn ≤ T ,

(3.7.10)

∫ tn

tn−1

||X2
s ||ds ≤ (tn − tn−1)K2

T (1 +W ∗T )2

where W ∗T := max0≤t≤T ||Wt||. We claim that the process

(3.7.11) Yt := exp(
1

4
(tn − tn−1)K2

T (1 +W ∗T )2)

is a submartingale, and by Doob’s maximal inequality we have

(3.7.12) E[Yt] = E

[
max

0≤t≤T
T 2
t

]
≤ 4E[Y 2

t ],

which is finite provided that tn − tn−1 ≤ 1/TK2
T . This allows us to construct

t0, . . . , tn(T ) as described previously. �
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4. Stochastic differential equations

4.1. Diffusion processes. The study of stochastic differential equations, the ex-
istence and uniqueness of solutions, is really the study of diffusion processes.1 The
term diffusion is loosely attributed to a Markov process with continuous sample
paths and that can be characterized in terms of an infinitesimal generator.

Consider a d-dimensional Markov family X = {Xt,Ft, 0 ≤ t < ∞} on (Ω,F )
with the family of measures {P x}, x ∈ Rd, and assume that X has continuous
paths. Suppose also that

(4.1.1) lim
t↓0

1

t
Ex[f(Xt)− f(X)] = (A f)(x), x ∈ Rd

holds for all f in a suitable subclass of C2(Rd). The limit is called the infinitesimal
generator of the Markov family, applied to the test function f . The operator A is
given by

(4.1.2) (A f)(x) :=
1

2

d∑
i,j=1

aij(x)
∂2f(x)

∂xi∂xj
+

d∑
i=1

bi(x)
∂f(x)

∂xi

for suitable Borel-measurable functions bi, aij : Rd → R, 1 ≤ i, j ≤ d. This opera-
tor is called the second-order differential operator associated with the drift vector
(b1, . . . , bd) and diffusion matrix a = (aij) which is assumed to symmetric and
nonnegative-definite for all x ∈ Rd.

Heuristically, we can interpret the coefficients as follows: fix x ∈ Rd, and let
fi(y) = yi and fij(y) = (yi − xi)(yj − xj), for y ∈ Rd. Assuming the limit exists,
we obtain

(4.1.3) Ex[X
(i)
t − xi] = tbi(x) + o(t)

(4.1.4) Ex[(X
(i)
t − xi)(X

(j)
t − xj)] = taij(x) + o(t)

as t ↓ 0 for 1 ≤ i, j ≤ d. In other words, the drift vector b(x) measures locally
the mean velocity of the random motion modeled by X, and a(x) approximates
the rate of change in the covariance matrix of the vector Xt − x for small values of
t > 0.

Definition 4.1. Let X be a d-dimensional Markov family such that

(1) X has continuous sample paths,
(2) (4.1.1) holds for every f ∈ C2(Rd) which itself, its first- and second-order

derivatives are bounded,
(3) (4.1.3) and (4.1.4) hold for every x ∈ Rd,
(4) (a) for each A ∈ F , the mapping x 7→ P x(A) is universally measurable,

(b) for each x ∈ Rd, we have P x(X0 = x) = 1,
(c) for each x ∈ Rd, A ∈ B(Rd), and any stopping time S of {Ft},
P x[XS+t ∈ A|FS+ ] = P x[XS+ ∈ XS+ ], P x-a.s.on {S <∞}

(d) for each x ∈ Rd, A ∈ B(Rd), and any stopping time S of {Ft},

P x[XS+t ∈ A|XS = y] = P y[Xt ∈ A], P xX−1
S -a.s. y

Then X is called a Kolmogorov-Feller diffusion process.

There are several approaches to the study of diffusions, ranging from the purely
analytical to the purely probabilistic. In order to illustrate the traditional analytical
approach, let us suppose that the Markov family above has a transition probability
density function

(4.1.5) P x[Xt ∈ dy] = Γ(t;x, y)dy, ∀x ∈ Rd, t > 0.

1Another important branch of study are jump processes, which we shall not cover here.
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Various heuristic arguments, with (4.1.1) as their starting point, can then be em-
ployed to suggest that Γ(t;x, y) should satisfy the forward Kolmogorov equation or
the Fokker-Planck equation, for every fixed x ∈ Rd,

(4.1.6)
∂

∂t
Γ(t;x, y) = A ∗Γ(t;x, y), (t, y) ∈ (0,∞)×Rd,

and the backward Kolmogorov equation, for every fixed x ∈ Rd,

(4.1.7)
∂

∂t
Γ(t;x, y) = A Γ(t;x, y), (t, y) ∈ (0,∞)×Rd.

The operator A ∗ is the formal adjoint operator of A , given by

(4.1.8) (A ∗f)(y) :=
1

2

d∑
i,j=1

∂2

∂yi∂yj
[aij(y)f(y)] +

d∑
i=1

∂

∂xi
[bi(y)f(y)]

provided of course that the coefficients aij , bi posses the smoothness properties re-
quired. The early work of Kolmogorov (1931) and Feller (1936) used tools from
the theory of partial differential equations to establish, under suitable and rather
restrictive conditions, the existence of a solution Γ(t;x, y) to the forward and back-
ward Kolmogorov equations.

The methodology of stochastic differential equations was suggested by Lévy as an
alternative, probabilistic approach to diffusions and was carried out in a masterly
way by Itô. Suppose we have a continuous, adapted d-dimensional process X =
{Xt,Ft; 0 ≤ t < ∞} which satisfies for every x ∈ Rd, the stochastic integral
equation

(4.1.9) X
(i)
t = xi +

∫ t

0

bi(Xs)ds+

r∑
i=1

∫ t

0

σij(Xs)dW
(j)
s , 0 ≤ t <∞, 1 ≤ i ≤ d,

on a probability space (Ω,F , P x) where W is a Brownian motion in Rr and the
coefficients bi, σij : Rd → R are Borel-measurable. Then it is reasonable to expect
that under certain conditions, (4.1.1), (4.1.3), and (4.1.4) will be valid, with

(4.1.10) aij(x) =

r∑
k=1

σik(x)σkj(x).

Thus the diffusion processes will be solutions to stochastic differential equations,
which we now turn to.

4.2. Strong solutions. Let bi(t, x), σij(t, x), 1 ≤ i ≤ d, 1 ≤ j ≤ r be Borel-
measurable functions from [0,∞) × Rd to R. Define the drift vector b(t, x) =
(bi(t, x)) and the dispersion matrix σ(t, x) = (σij(t, x)). We want to assign mean-
ing to the stochastic differential equation

(4.2.1) dXt = b(x,Xt)dt+ σ(t,Xt)dWt,

written component wise as

(4.2.2) dX
(i)
t = bi(x,Xt)dt+

r∑
j=1

σij(t,Xt)dW
(j)
t , 1 ≤ i ≤ d,

where W = {Wt,Ft, 0 ≤ t < ∞} is an r-dimensional Brownian motion and
X = {Xt; 0 ≤ t < ∞} is a suitable Rd-valued stochastic process with con-
tinuous sample paths, which will be the ‘solution’ of the equation. The matrix
a(t, x) = σ(t, x)σ(t, x)T with entries

(4.2.3) aik(t, x) :=

r∑
j=1

σij(t, x)σik(t, x), 1 ≤ i, k ≤ d

is called the diffusion matrix.
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Fix a probability space (Ω,F , P ). Assume that this space is rich enough to
accommodate an Rd-valued random vector ξ, independent of FW

∞ and with the
given distribution

(4.2.4) µ(A) = P (ξ ∈ A), A ∈ B(Rd).

Consider the left-continuous filtration

(4.2.5) Gt := σ(ξ,Ws; 0 ≤ s ≤ t, 0 ≤ t <∞,
and the collection of null sets

(4.2.6) N := {N ⊂ Ω : ∃G ∈ G∞ s.t. N ⊂ G,P (G) = 0},
then define the augmented filtration

(4.2.7) Ft := σ(Gt ∪N ), 0 ≤ t <∞.
Definition 4.2. A strong solution of the stochastic differential equation (4.2.1) on
(Ω,F , P ) with respect to the fixed Brownian motion W and initial condition ξ, is
a process X = {Xt; 0 ≤ t <∞} with continuous sample paths and satisfying

(1) X is adapted to the filtration {Ft} above,
(2) P (X0 = ξ) = 1,
(3)

(4.2.8) P (

∫ t

0

bi(s,Xs) + σ2
ij(s,Xs)ds <∞) = 1

for every 1 ≤ i ≤ d, 1 ≤ j ≤ r, and 0 ≤ t <∞,
(4) the integral version of (4.2.1),

(4.2.9) Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, 0 ≤ t <∞,

or equivalently
(4.2.10)

X
(i)
t = X

(i)
0 +

∫ t

0

bi(s,Xs)ds+

r∑
j=1

∫ t

0

σij(s,Xs)dW
(j)
s , 1 ≤ i ≤ d, 0 ≤ t <∞,

holds almost surely.

We note that property (1) is the most important part of the definition. It
corresponds to X as the ‘output’ of the dynamical system described by b and σ,
and whose input is W and ξ. The principle of causality in dynamics requires that
Xt at time t only depend on ξ and the values of Ws, 0 ≤ s ≤ t. Moreover, the latter
two should determine the output {Xt; 0 ≤ t < ∞} in an unambiguous way. So we
want to talk about uniqueness.

Definition 4.3. Let b(t, x) and σ(t, x) be given. Suppose that whenever W is an r-
dimensional Brownian motion on some (Ω,F , P ), ξ is an independent d-dimensional

random vector, {Ft} is given as above, and X, X̃ are two strong solutions relative

to W with initial condition ξ, then P (Xt = X̃t; 0 ≤ t <∞) = 1. We then say that
strong uniqueness holds for the pair b and σ.

Example 4.4. Let d = 1. Consider the equation dXt = b(t,Xt)dt + dWt, where
b is a bounded, Borel-measurable,, and nonincreasing in the space variable, i.e.,
b(t, x) ≤ b(t, y) for all y ≤ x, 0 ≤ t <∞. Strong uniqueness holds for this equation.
Indeed, for any two processes X(1), X(2) satisfying P -a.s.,

(4.2.11) X
(i)
t = X0 +

∫ t

0

b(s,X(i)
s )ds+Wt, i = 1, 2, 0 ≤ t <∞.

Define the continuous process ∆ = X
(1)
t −X

(2)
t , and observe that P -a.s.,

(4.2.12) ∆2
t = 2

∫ t

0

(X(1)
s −X(2)

s )(b(s,X(1)
s − b(s,X(2)

s ))ds ≤ 0, 0 ≤ t <∞.
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If the dispersion matrix σ(t, x) = 0, then the stochastic integral equation reduces
to an ordinary integral equation

(4.2.13) Xt = X0 +

∫ t

0

b(s,Xs)ds.

In the theory of such equations it is common to impose the assumption that the
vector field b(t, x) satisfies a local Lipschitz condition in the space variable x, and
is bonded on compact subsets of [0,∞) × Rd. These conditions ensure that for

sufficiently small t > 0, the so-called Picard-Lindelöf iterations X
(n)
t converge to

a solution. Here then is an existence result. For any (d × r) matrix σ, we define

||σ||2 =
∑d
I=1

∑r
j=1 σ

2
ij .

Theorem 4.5. Suppose that the global Lipchitz and linear growth conditions are
satisfied, namely,

(4.2.14) ||b(t, x)− b(t, y)||+ ||σ(t, x)− σ(t, y)|| ≤ K||x− y||

(4.2.15) ||b(t, x)||2 + ||σ(t, x)||2 ≤ K2(1 + ||x||2)

for every 0 ≤ t < ∞, and x, y ∈ Rd, where K is a positive constant. Also, on
some probability space (Ω,F , P ) let ξ be an Rd-valued random vector, independent
of r-dimensional Brownian motion W , with finite second moment E||ξ||2 <∞. Let
Ft be as above.

Then there exists a continuous, adapted process X = {Xt,Ft; 0 ≤ t <∞} which
is a strong solution of (4.2.1) relative to W with the initial condition ξ. Moreover,
X is square-integrable, i.e., for every T > 0 there is a constant C depending only
on K and T , such that

(4.2.16) E||Xt||2 ≤ C(1 + E||ξ||2)eCt, 0 ≤ t < T.

Proof. The idea of the proof is to construct a sequence of successive approximations

by X
(0)
t = ξ, and

(4.2.17) X
(k+1)
t := ξ +

∫ t

0

b(s,X(k)
s )ds+

∫ t

0

σ(s,X(k)
s )dWs, 0 ≤ t <∞,

for k ≥ 0. Such processes are continuous and adapted to {Ft}. We would like to
show that it converges to the solution of (4.2.1).

Write X
(k+1)
t −X(k)

t = Bt +Mt where
(4.2.18)

Bt :=

∫ t

0

b(s,X(k)
s )− b(s,X(k−1)

s )ds, Mt :=

∫ t

0

σ(s,X(k)
s )− σ(s,X(k−1)

s )dWs.

By the Lipschitz and linear growth conditions, the processM = {Mt = (M
(1)
t , . . . ,M

(d)
t ),Ft; 0 ≤

t <∞} is seen to be a vector of square-integrable martingales. We claim that

E[ max
0≤s≤t

||Ms||2] ≤ Λ1E

[∫ t

0

||σ(s,X(k)
s )− σ(s,X(k−1)

s )||2ds
]

(4.2.19)

≤ Λ1K
2E

[∫ t

0

||X(k)
s −X(k−1)

s ||2ds
]
.(4.2.20)

To prove the claim we show that for an vector M of continuous local martingales,
notice that there exists a positive constant Λ such that

(4.2.21) E[ max
0≤s≤t

||Ms||]2 ≤ d
d∑
i=1

E[ max
0≤s≤t

Ms]
2 ≤ d

d∑
i=1

K1E[〈M (i)〉t],

and refer to [KS, Remark 3.3.30]
On the other hand, we have by Jensen’s inequality and the Lipschitz condition,

(4.2.22) E||Bt||2 ≤ K2t

∫ t

0

E||X(k)
s −X(k−1)

s ||2ds,
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so with L = 4K2(Λ1 + T ),

(4.2.23) E

[
max

0≤s≤t
||X(k)

s −X(k−1)
s ||2

]
≤ L

∫ t

0

E||X(k)
s −X(k−1)

s ||2ds, 0 ≤ t ≤ T.

The last inequality can be iterated to yield successive upper bounds

(4.2.24) E

[
max

0≤s≤t
||X(k)

s −X(k−1)
s ||2

]
≤ 4C

(Lt)k

k!
, 0 ≤ t ≤ T.

where C = max0≤t≤T E||X(1)
t − ξ||2, which is finite because of (4.2.16). Applying

the Čebyšev inequality, we get

(4.2.25) P

(
max

0≤s≤t
||X(k)

s −X(k−1)
s || > 1

2k+1

)
≤ 4C

(4LT )k

k!
, k = 1, 2, . . .

and this upper bound is the general term in a convergent series. From the Borel-
Cantelli lemma, we conclude that there exists an event Ω∗ ∈ F with P (Ω∗) = 1
and an integer-valued random variable N(ω) such that for every ω ∈ Ω∗,

(4.2.26) max
0≤t≤T

||X(k)
s (ω)−X(k−1)

s (ω)|| ≤ 1

2k+1
, k > N(ω),

and consequently,

(4.2.27) max
0≤t≤T

||X(k+m)
s (ω)−X(k)

s (ω)|| ≤ 1

2k
, m ≥ 1, k > N(ω).

We see then that the sequence of sample paths {X(k)
t (ω); 0 ≤ t ≤ T}∞k=1 is conver-

gent in the sup norm on continuous functions, from which follows the existence of
a continuous limit {Xt(ω); 0 ≤ t ≤ T} for all ω ∈ Ω∗. Since T is arbitrary, we have
the existence of a continuous process X = {Xt; 0 ≤ t <∞} with the property that
for P -a.e. ω, the sample paths X(k)(ω) converge to X(ω) uniformly on compact
subsets of [0,∞).

The inequality (4.2.16) is a consequence of the fact that for every T > 0 there is
a constant C depending only on K and T , such that

(4.2.28) E||X(k)
t ||2 ≤ C(1 + E||ξ||2)eCt, k ≥ 0, 0 ≤ t < T.

and Fatou’s lemma. We first show that X
(k)
t is defined for all t ≥ 0. It will be

enough to show that

(4.2.29)

∫ t

0

||b(s,X(k)
s )||2 + ||σ(s,Xs)

(k)||2ds <∞, k ≥ 0, 0 ≤ t <∞, a.s..

By the linear growth condition, this will follow from

(4.2.30) sup
0≤t≤T

E||X(k)
t || <∞.

We will prove this by induction. For k = 0, this is clear. Now assume it (4.2.30)
true for some k > 0. Then following the proof of Theorem 4.8, we obtain the bound

(4.2.31) E||X(k+1)||2 ≤ 9E||ξ||2 + 9(T + 1)K2

∫ t

0

(1 + E||X(k)
s ||2)ds,

giving then (4.2.30) for k + 1. Using the last inequality, we also have

(4.2.32) E||X(k+1)||2 ≤ C(1 + E||X(k)
s ||2) + C

∫ t

0

E||X(k)
s ||2ds, 0 ≤ t ≤ T,

where C depends only on K and T . Then iterating the inequality gives

(4.2.33) E||X(k+1)||2 ≤ C(1 + E||X(k)
s ||2)(1 + Ct+

(Ct)2

2!
+ · · ·+ (Ct)k+1

(k + 1)!
),

and thus (4.2.16) follows.
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This and the linearity condition gives condition (3) of Definition 4.2. Conditions
(i) and (ii) are clearly satisfied. We leave as an exercise the proof that (4) is also
satisfied, i.e., argue that

(4.2.34)

∣∣∣∣∣∣∣∣∫ t

0

b(s,X(k)
s )ds−

∫ t

0

b(s,Xs)ds

∣∣∣∣∣∣∣∣2
and

(4.2.35) E

∣∣∣∣∣∣∣∣∫ t

0

σ(s,X(k)
s )dWs −

∫ t

0

σ(s,Xs)dWs

∣∣∣∣∣∣∣∣2
converge to 0 a.s. for 0 ≤ t ≤ T as k →∞. Note that {X(k)

t } is a Cauchy sequence

and X
(k)
t → Xt a.s. in L2(Ω,F , P ).

�

Remark 4.6. The equation

(4.2.36)
dXt

dt
= X2

t , X0 = 1

corresponding to b(x) = x2, which is does not satisfy the linear growth condition,
has the unique solution

(4.2.37) Xt =
1

1− t
, 0 ≤ t < 1,

thus is is impossible to find a global solution i.e., one that is defined for all t in
this case. More generally, the condition ensures that the solution Xt(ω) does not
explode, i.e., |Xt(ω)| does not tend to infinity in a finite amount of time.

Remark 4.7. The equation

(4.2.38)
dXt

dt
= 3X

2
3
t , X0 = 0

has more than one solution, namely, for any a > 0,

(4.2.39) Xt =

{
0 t ≤ a
(t− a)3 t > a

.

is a solution to the differential equation. In this case b(x) = 3x
2
3 does not satisfy

the Lipschtiz condition at x = 0. Indeed, the condition guarantees uniqueness of
the solution.

Indeed, the uniqueness is captured by the following theorem:

Theorem 4.8. Suppose that b(t, x) and σ(t, x) are locally Lipschitz-continuous in
x, i.e., for every integer n ≥ 1 there exists a constant Kn > 0 such that for every
t ≥ 0, and ||x||, ||y|| ≤ n,

(4.2.40) ||b(t, x)− b(t, y)||+ ||σ(t, x)− σ(t, y)|| ≤ Kn||x− y||.

Then strong uniqueness holds for (4.2.1).

Proof. Suppose that X,X ′ are strong solutions defined for all t ≥ 0 of (4.2.1) relatie
to the same W and ξ on some (Ω,F , P ). Define the stopping times τn = inf{t ≥ 0 :
||Xt|| ≥ n} for n ≥ 1, and similarly τ ′. Set Sn := τn ∧ τ ′n. Clearly limn→∞ Sn =∞,
P -a.s., and
(4.2.41)

Xt∧Sn−X ′t∧Sn =

∫ t∧Sn

0

(b(u,Xu)−b(u,X ′u))du+

∫ t∧Sn

0

(σ(u,Xu)−σ(u,X ′u))dWu.
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Using the vector inequality ||v1 + . . . vk||2 ≤ k2(||v1||2 + · · · + ||vk||2), the Hölder
inequality for Lebesgue integrals, and the local Lipschitz condition, we have

E||Xt∧Sn −X ′t∧Sn ||
2

≤ 4E

[∫ t∧Sn

0

||b(u,Xu)− b(u,X ′u)||du

]2

+ 4E

d∑
i=1

 r∑
j=1

∫ t∧Sn

0

(σij(u,Xu)− σij(u,X ′u))dW (j)

2

.

Then to the stochastic integral we apply the d-dimensional analogue of Itô’s isom-

etry, i.e., the 1-dimensional formula E[It(X)]2 = E
∫ t

0
X2
udu, the property that

E[

∫ t∧Sn

0

(σij(u,Xu)− σij(u,X ′u))dW (j)
u

∫ t∧Sn

0

(σij(u,Xu)− σij(u,X ′u))dW (k)
u ]

= E

∫ t∧Sn

0

(σij(u,Xu)− σij(u,X ′u))d〈W (j),W (k)〉u

and that for Brownian motion, 〈W (j),W (k)〉t = δjkt.
We then have the upper bound

4tE

[∫ t∧Sn

0

||b(u,Xu)− b(u,X ′u)||2du

]
+ 4E

[∫ t∧Sn

0

||σij(u,Xu)− σij(u,X ′u)||2
]
du

≤ 4(T + 1)K2
n

∫ t

0

E||Xu∧Sn −X ′u∧Sn ||
2du.

We now need the Gronwall inequality: given a continuous function a(t) such that

(4.2.42) 0 ≤ g(t) ≤ α(t) + β

∫ t

0

g(s)ds, 0 ≤ t ≤ T,

with β ≥ 0 and α : [0, T ]→ R integrable. Then

(4.2.43) g(t) ≤ α(t) + β

∫ t

0

α(s)eβ(t−s)ds, 0 ≤ t ≤ T.

We leave the proof of this as an exercise.
Apply the Gronwall inequality with g(t) = E||Xu∧Sn−X ′u∧Sn ||

2 to conclude that
g(t) = 0. Hence {Xt∧Sn ; 0 ≤ t <∞} and {X ′t∧Sn ; 0 ≤ t <∞} are modifications of
one another, and thus indistinguishable, i.e.,

(4.2.44) P (Xt∧Sn = X ′t∧Sn ; 0 ≤ t <∞) = 1.

Letting n→∞, we see that the same is true for {Xt; 0 ≤ t <∞} and {Xt; 0 ≤ t <
∞}. �

4.3. Examples. If we allow for some randomness in some of the coefficients of a
differential equation, we often obtain a more realistic mathematical model of the
situation. Consider the simple population growth model

(4.3.1)
dN

dt
= a(t)N(t), N(0) = N0,

where N(t) is the population at time t, and a(t) is the relative growth rate at time
t. It might happen that a(t) is not completely known, but subject to some random
environmental effects. So we have a(t) = r(t)+ ‘noise’, where we do not know
the exact behaviour of the noise term, only its probability distribution. Or, more
generally, we consider equations of the form

(4.3.2)
dX

dt
= b(t,Xt) + σ(t,Xt)(noise)
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where b, σ are given real-valued functions. The noise will be described by some
stochastic process Wt. Considering first a discrete version of this,

(4.3.3) Xk+1 −Xk = b(tk, Xk)∆tk + σ(tk, Xk)Wtk∆tk

for tk, tk+1 in some partition 0 = t0 < t1 < · · · < tn = t, and ∆tk = tk+1 − tk.
So we want to know that the limit of the right-hand side exists, in some sense, as
∆tk → 0. If it does, then we can understand this to mean that Xt satisfies the
stochastic integral equation

(4.3.4) Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs,

or in differential form, dXt = b(t,Xt)dt+ σ(t,Xt)dBt. So the work we have to put

in is to give meaning to the stochastic integral
∫ t

0
f(s, ω)dBs(ω).

Remark 4.9. The differeintal form of Itô’s rule can be written as

(4.3.5) df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)(dXt)

2

with the rule that dXt ∧ dXt = dt, dt ∧ dt = 0, dXt ∧ dt = 0.

Example 4.10. Let’s try to solve our population model

(4.3.6)
dNt
dt

= (rt + αWt)Nt,

where α is a constant. Let’s also assume that rt is constant. Then we write this as

(4.3.7) dNt = rNtdt+ αNtdWt,

hence

(4.3.8)

∫ t

0

dNs
Ns

= rt+ αWt, W0 = 0.

To evaluate the integral we use the differential form of Itô’s formula on g(t, x) =
lnx, x > 0 to get in differential form,

(4.3.9) d(lnNt) =
1

Nt
dNt +

1

2

(
− 1

N2
t

)
(dNt)

2 =
dNt
Nt
− 1

2
α2dt,

since

(4.3.10) (dNt)
2 = (rNtdt+ αNtdWt)

2 = α2N2
t dt.

Hence

(4.3.11) ln
Nt
N0

= (r − 1

2
α2)t+ αWt,

or

(4.3.12) Nt = N0 exp((r − 1

2
α2)t+ αWt).

This is our solution. If Wt is Brownian motion, then the solution Nt is an example of
geometric Brownian motion, which looks like Xt = X0 exp(µt+αBt), for constants
µ, α.

Remark 4.11. It seems reasonable that if Bt is independent of N0 we should have
E[Nt] = E[N0]ert, so it is the sam as when there is no noise in a(t). Let Y t = eαBt

and apply Itô’s formula to get

(4.3.13) Yt = Y0 + α

∫ t

0

eαBsdBs +
1

2
α2

∫ t

0

eαBsds.

Since E[
∫ t

0
f(s,Xs)dXs] = 0 is true for simple processes, it follows that E[

∫ t
0
eαBsdBs] =

0 also. Hence

(4.3.14) E[Yt] = E[Y0] +
1

2
α2

∫ t

0

e[Ys]ds,
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or,

(4.3.15)
d

dt
E[Yt] =

1

2
α2E[Yt], E[Y0] = 1.

So it follows that E[Yt] = eα
2t/2 and hence E[Nt] = E[N0]ert.

Example 4.12. The charge Q(t) at time t at a fixed point in an electric circuit
satisfies the differential equation

(4.3.16) LQ′′(t) +RQ′(t) +
1

C
Q(t) = F (t)

where L is inductance, R is resistance, C is capacitance, and F (t) the potential
source at time t. Again if we have a situation where some of the coefficients are
not deterministic, say F (t) = G(t)+αW (t), we first introduce the vector X(t, ω) =
(QtQ

′
t)
T , to get

X ′1 = X2(4.3.17)

LX2 = −RX2 −
1

C
X1 +Gt + αWt,(4.3.18)

or, in matrix notation,

(4.3.19) dX(t) = AXtdt+Htdt+KdBt

where

(4.3.20) dX =

(
dX1

dX2

)
, A =

(
0 1
− 1
CL −RL

)
, Ht =

(
0

1
LGt

)
,K =

(
0
α
L

)
,

and Bt is a one-dimensional Brownian motion.
Thus we are led to a 2-dimensional stochastic differential equation. Write

(4.3.21) e−AtdXt − e−AtAXtdt = e−At(Htdt+KdBt).

First apply Itô’s formula to the function

(4.3.22) f(t, x1, x2) = e−At
(
x1

x2

)
,

to get

(4.3.23) d(e−AtXt) = −Ae−AtXtdt+ e−AtdXt,

and substitute in the previous equation to get

(4.3.24) e−AtXt −X0 =

∫ t

0

e−AsHsds+

∫ t

0

e−AsKdBs,

or,

(4.3.25) Xt = eAt
[
X0 + e−AtKBt +

∫ t

0

e−At(Hs +AKBs)ds
]

by integration by parts.

Example 4.13 (Brownian motion on the unit circle). Let W = B = {Bt,Ft; 0 ≤
t <∞} be a 1-dimensional Brownian motion, and g(t, x) = (cosx, sinx) for x ∈ R.
Then X(t) = g(t,Xt) satisfies

dX1(t) = − sin(Bt)dBt −
1

2
cos(Bt)dt = −X2dBt−

1

2
X1dt(4.3.26)

dX2(t) = cos(Bt)dBt −
1

2
sin(Bt)dt = X1dBt −

1

2
X2dt.(4.3.27)

Or, in matrix notation,

(4.3.28) dX(t) = −1

2
X(t)dt+

(
0 −1
1 0

)
Y (t)dBt.

Exercise 9. Show that
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(1) Xt = eBt solves dXt = 1
2Xtdt+XtdBt.

(2) Xt = Bt/(1 + t), B0 solves dXt = − 1
1+tXtdt+ 1

1+tXtdBt.

(3) (X1(t), X2(t)) = (t, etBt) solves

(
dX1

dX2

)
=

(
1
X2

)
dt+

(
0
eX1

)
dBt

Exercise 10 (Ornstein-Uhlenbeck process). Solve the stochastic differential equa-
tion dXt = µXtdt + σdBt where µ, σ ∈ R. (Hint: multiply with the integrat-
ing factor e−t and compare with d(e−tXt).) Then find E[Xt] and Var[Xt] :=
E[(Xt − E[Xt])

2].

4.4. Weak solutions. In the case of strong solutions, the probability space (Ω,F , P )
is given, together with the data of a Brownian motion W and initial condition ξ
on it. In the case of a weak solution, we only ask for the solution to be defined on
some probability space, and for some Brownian motion and filtration.

Definition 4.14. A weak solution of the stochastic differential equation (4.2.1) is
consists of

(1) (Ω,F , P ) a probability space
(2) {Ft} a filtration of sub-σ-algebras satisfying the usual conditions
(3) W = {Wt,Ft; 0 ≤ t <∞} an r-dimensional Brownian motion
(4) X = {Xt,Ft; 0 ≤ t < ∞} a continuous, adapted Rd-valued process, such

that conditions (3) and (4) of Definition 4.2 are satisfied.

The probability measure µ(A) := P (X0 ∈ A), A ∈ B(Rd) is called the initial
distribution of the solution.

Note that the filtration {Ft} is not necessarily the augmented filtration as in
the strong solution, thus the value of the solution Xt(ω) at time t is not necessarily
given by a measurable functional of the Brownian path {Ws(ω); 0 ≤ s ≤ t} and the
initial condition ξ(ω) = X0(ω). On the other hand, since W is a Brownian motion
relative to {Ft}, the solution Xt(ω) cannot anticipate the future of the Brownian
motion, besides {Ws(ω); 0 ≤ s ≤ t} and ξ(ω), whatever extra information required
to compute Xt(ω) must be independent of {Wθ(ω)−Wt(ω); t ≤ θ <∞}.

One consequence of this arrangement is that the existence of a weak solu-
tion does not guarantee, for a given Brownian motion W̃ on a (possibly differ-

ent) probability space (Ω̃, F̃ , P̃ ) the existence of a process X̃ such that the tuple

(X̃, W̃ ), (Ω̃, F̃ , P̃ ), {F̃t} is again a weak solution. It is clear, however, that a strong
solution is a weak solution.

Definition 4.15. Suppose that whenever (X,W ), (Ω,F , P ), {Ft} and (X̃, W̃ ), (Ω̃, F̃ , P̃ ), {F̃t}
are weak solutions to (4.2.1) with a common Brownian motion (but possibly differ-
ent filtrations) on a common probability space (Ω,F , P ) and with common initial

value, i.e., P (X0 = X̃0) = 1, we have then the two X, X̃ are indistinguishable

P (Xt = X̃t; 0 ≤ t < ∞) = 1. We say then that pathwise uniqueness holds for
(4.2.1).

Definition 4.16. We say that uniqueness in the sense of probability law holds for
(4.2.1) if for any two weak solutions with the same initial distribution P (X0 ∈ A) =

P̃ (X̃0 ∈ A) for all A ∈ B(Rd), the two processes have the same law PX−1 = P̃ X̃−1.

Example 4.17. Consider the one dimensional equation

(4.4.1) Xt =

∫ t

0

sign(Xs)dWs, 0 ≤ t <∞.

If (X,W ), (Ω,F , P ), {Ft} is a weak solution, then the process X = {Xt,Ft; 0 ≤
t <∞} is a continuous sequare-integrable martingale with quadratic variation pro-

cess 〈X〉t =
∫ t

0
sign(Xs)

2ds = t. Therefore, X is a Brownian motion and uniqueness
in the sense of probability law holds. On the other hand, (−X,W ), (Ω,F , P ), {Ft}
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is also a weak solution, so once we establish the existence of a weak solution, we
have also shown that pathwise uniqueness cannot hold for Xt.

So start with a probability space (Ω,F , P ) and a one-dimensional Brownian

motion X = {Xt, ḞX
t ; 0 ≤ t < ∞} on it with P (X0 = 0) = 1 and {ḞX

t } the
augmentation of the filtration {FX

t } under P . The same argument as before shows
that

(4.4.2) Wt :=

∫ t

0

sign(Xs)dXs, 0 ≤ t <∞

is a Brownian motion adapted to {ḞX
t }. Then one can show that this is a weak

solution to (4.4.1) above.

Now we can produce weak solutions to stochastic differential equations using
transformation of drift, via the Girsanov theorem.

Proposition 4.18. Fix T > 0, and let W be a d-dimensional Brownian motion,
and b(t, x) a Borel measurable, Rd-valued function on [0, T ]×Rd such that

(4.4.3) ||b(t, x)|| ≤ K(1 + ||x||) 0 ≤ t ≤ T, x ∈ Rd,

for some K > 0. Then for any probability measure µ on (Rd,B(Rd)), the stochastic
differential equation

(4.4.4) dXt = b(t,Xt)dt+ dWt, 0 ≤ t ≤ T

has a weak solution with initial distribution µ.

Proof. Let X = {Xt,Ft; 0 ≤ t ≤ T}, (Ω,F ), {P x}x∈Rd be a Brownian family.
According to Corollary 3.7.9

(4.4.5) Zt := exp

(
d∑
i=1

∫ t

0

bi(s,Xs)dX
(i)
s −

1

2

∫ t

0

||b(s,Xs)||2ds

)
is a martingale under each measure P x, so the Girsanov Theorem 3.20 implies that

under Qx given by the Radon-Nikodym derivative dQx

dPx = ZT , the process

(4.4.6) Wt = Xt −X0 −
∫ t

0

b(s,Xs)ds, 0 ≤ t ≤ T,

is a Brownian motion with Qx(W0 = 0) = 1 for all x ∈ Rd. Rewriting this as

(4.4.7) Xt = X0 +

∫ t

0

b(s,Xs)ds+Wt, 0 ≤ t ≤ T,

we see that with Qµ :=
∫
Rd Q

x(A)µ(dx), the triple (X,W ), (Ω,F , P ), {Ft} is a
weak solution to (4.4.4). �

The Girsanov theorem can also be used to study the uniqueness in law of weak
solutions.

Proposition 4.19. Assume that (X(i),W (i)), (Ω(i),F (i), P (i)), {F (i)
t }, i = 1, 2 are

weak solutions to (4.4.4) with the same initial distribution. If

(4.4.8) P (i)

[∫ T

0

||b(t,X(i)
t )||2dt <∞

]
= 1, i = 1, 2,

then (X(i),W (i)), i = 1, 2 have the same law under their respective probability mea-
sures.

Proof. For each k ≥ 1, let

(4.4.9) τ
(i)
k := T ∧ inf

{
0 ≤ t ≤ T :

∫ T

0

||b(t,X(i)
t )||2dt = k

}
.
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Then by Novikov’s condition, Corollary 3.25,

(4.4.10) ξ
(k)
t (X(i)) := exp

(
−
∫ t∧τ(i)

k

0

b(s,X(i)
s )dXs −

1

2

∫ t∧τ(i)
k

0

||b(s,X(i)
s )||2ds

)

is a martingale, so we may define probability measures P̃
(i)
k on F

(i)
T , i = 1, 2 ac-

cording to dP̃
(i)
k /dP (i) = ξ

(k)
T (X(i)). The Girsanov Theorem 3.20 then implies that

under P̃
(i)
k the process

(4.4.11) X
(i)

t∧τ(i)
k

= X
(i)
0 +

∫ t∧τ(i)
k

0

b(s,X(i))ds+W
(i)

t∧τ(i)
k

, 0 ≤ t ≤ T

is a d-dimensional Brownian motion with initial distribution µ, stopped at time

t ∧ τ (i)
k .

But τ
(i)
k , {W (i)

t : 0 ≤ t ≤ t ∧ τ (i)
k }, and ξ

(k)
T (X(i)) can all be defined in terms of

this latter process. Therefore, for 0 = t0 < · · · < tn = T and A ∈ B(R2d(n+1)) we
have

P (1)[(X
(1)
t0 ,W

(1)
t0 , . . . , X

(1)
tn ,W

(1)
tn ) ∈ A : τ

(1)
k = T ](4.4.12)

=

∫
Ω(1)

1

ξ
(k)
T (X(1))

1{(X(1)
t0
,W

(1)
t0
,...,X

(1)
tn
,W

(1)
tn

)∈A:τ
(1)
k =T}dP̃

(1)
k(4.4.13)

=

∫
Ω(2)

1

ξ
(k)
T (X(2))

1{(X(2)
t0
,W

(2)
t0
,...,X

(2)
tn
,W

(2)
tn

)∈A:τ
(2)
k =T}dP̃

(2)
k(4.4.14)

= P (2)[(X
(2)
t0 ,W

(2)
t0 , . . . , X

(2)
tn ,W

(2)
tn ) ∈ A : τ

(2)
k = T ].(4.4.15)

By assumption (4.4.8),

(4.4.16) lim
k→∞

P (i)(τ
(i)
k = T ) = 1, i = 1, 2,

so passage to the limit in the last computation gives the desired conclusion. �

5. Applications

5.1. Basics on PDEs. Let’s go back to analytic geometry. We have the familiar
conic sections: the circle, ellipse, parabola, and hyperbola:

(5.1.1) x2 + y2 = a2,
x2

a2
+
y2

b2
= 1, y2 = 4ax,

x2

a2
− y2

b2
= 1.

A partial differential equation, (PDE) is a differential equation that contains un-
known multivariable functions and their partial derivatives. This is in contrast to
ordinary differential equations (ODE), which deal with functions of a single variable
and their derivatives.

Consider a real-valued function u(x, y). A second-order, linear, constant coeffi-
cient PDE for u is of the form

(5.1.2) Auxx + 2Buxy +Dux + Euy + F = 0.

If we are able to replace the partials ∂x, ∂y by say, X,Y , (which can be done
formally by a Fourier transform), then we may convert the PDE into a polynomial
of the same degree, with the top degree (a homogeneous polynomial) being most
significant for the classification.

Indeed, as with the conic sections, we classify the PDE based on the discriminant,
namely,

(5.1.3) B2 − 4AC


< 0 elliptic,

= 0, parabolic,

> 0, hyperbolic.
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Important examples of such PDEs are the heat equation (parabolic) and the wave
equation (hyperbolic). More generally, if we have a function u of x1, . . . , xd vari-
ables, then it is classified according to the signature of the eigenvalues of the coef-
ficient matrix (aij), where aij is the coefficient of ∂2u/∂xi∂xj .

Remark 5.1. We point out here that what we shall be studying in this section are
deterministic PDEs. There are stochastic PDEs the same way there are stochastic
(ordinary) differential equations like we have studied in the last section. In this
section, we are taking a different approach, namely, studying deterministic PDEs
using the stochastic methods which we have developed.

5.2. The Dirichlet problem. Recall that a function u : D ⊂ Rd → R, where U is

an open set, is called harmonic in D if u is of class C2 and ∆u :=
∑d
i=1(∂2u/∂x2

i ) =
0 in D. Let W = {Wt,Ft; 0 ≤ t < ∞}, (Ω,F ), {P x}x∈Rd be a d-dimensional
Brownian family and {Ft} satisfies the usual conditions. Define the stopping time

(5.2.1) τD = inf{t ≥ 0 : Wt ∈ Dc}
the first time of exit from D. Since Wt is almost surely unbounded (the Law of the
Iterated Logarithm states that

(5.2.2) lim sup
t→∞

Wt(ω)√
2t log log t

= 1, lim inf
t→∞

Wt(ω)√
2t log log t

= −1

), so

(5.2.3) P x(τD <∞) = 1, x ∈ D
Let Br := {x ∈ Rd : ||x|| < r} be the open ball of radius r centered at the origin.
Its volume is

(5.2.4) Vr :=
2rdπd/2

dΓ(d/2)

and its surface is S − r := d
rVr. Define a probability measure µr on ∂Br by

(5.2.5) µr(dx) = P 0[WτBr
∈ dx], r > 0.

Now, d-dimensional Brownian motion is rotationally invariant in the sense that
for any d × d orthogonal matrix Q, i.e., QT = Q−1, one checks that QWt is also
a d-dimensional Brownian motion. Therefore the measure µr is also rotationally
invariant and thus proportional to the surface measure on ∂Br. In particular, the
Lebesgue integral of a function f over B can be written in the iterated form as

(5.2.6)

∫
Br

f(x)dx =

∫ r

0

Sρ

∫
∂Br

f(x)µρ(dx)dρ.

we say that the function u has the mean-value property if for every a ∈ D and
0 < r <∞ such that a+ B̄r ⊂ D, we have

(5.2.7) u(a) =

∫
∂Br

u(a+ x)dx.

One can derive using the previous identity

(5.2.8) u(a) =
1

Vr

∫
Br

u(a+ x)dx,

which says that the mean integral value of u over a ball is equal to the value at the
center.

Proposition 5.2. If u is harmonic in D, then it has the mean-value property there.

Proof. For a ∈ D and 0 < r <∞ such that a+ B̄r ⊂ D, we have from Itô’s rule
(5.2.9)

u(Wt∧τa+Br ) = u(W0) +

d∑
i=1

∫ t∧τa+Br

0

∂u

∂xi
(Ws)dW

(i)
s +

1

2

∫ t∧τa+Br

0

∆u(Ws)ds,
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for 0 ≤ t < ∞. Since u is harmonic, the last integral vanishes, and since ∂u
∂xi

, 1 ≤
i ≤ d are bounded functions on a+B, the expectations under P a of the stochastic
integrals are all equal to 0. Taking expectation on both sides and letting t → ∞,
we use the fact that P x(τD <∞) = 1, x ∈ D to obtain

(5.2.10) u(a) = Eau(Wτa+Br
) =

∫
∂Br

u(a+ x)µr(dx)

�

Corollary 5.3 (Maximum principle). Suppose that u is harmonic in an open,
connected domain D. If u achieves its supremum over D at some point in D, then
it is identically constant.

Proof. Let M = supx∈D u(x) and DM = {x ∈ D : u(x) = M}. Assume that DM

is nonempty. We want to show that DM = D. Since u is continuous, DM is closed
relative to D. But for a ∈ DM and 0 < r <∞ such that a+ B̄r ⊂ D, we have the
mean value property

(5.2.11) M = u(a) =
1

Vr

∫
Br

u(a+ x)dx,

which shows that u = M on a+Br. Therefore DM is open. Since D is connected,
then either DM or D\DM must be empty. �

We also state a converse:

Proposition 5.4 (KS 4.2.5). If u : D → R has the mean value property, then u is
smooth and harmonic.

We can now describe the Dirichlet problem: Let D be an open subset of Rd, and
f : ∂D → R be a continuous function. Find a continuous function u : D̄ → R such
that u ∈ C2(D), and

(5.2.12) ∆u = 0 in D,

(5.2.13) u = f on ∂D.

If such a solution exists, then we call it a solution to the Dirichlet problem (D, f).
One may interpret the solution u(x) as the steady-state temperature at x ∈ D when
the boundary temperatures are specified by f .

In fact, using probabilistic methods we can immediately write down a likely
solution.

Proposition 5.5. Let

(5.2.14) u(x) = Ex[f(WτD )], x ∈ D̄.

If Ex|f(WτD )| <∞ for all x ∈ D, then u is harmonic in D.

Proof. By definition of τD, u satisfies (5.2.13). Furthermore, for a ∈ D and Br
chosen so that a+ B̄r ⊂ D, we have from the strong Markov property

u(a) = Ea[f(WτD )] = Ea{Ea[f(WτD )|Fτa+Br
]}(5.2.15)

= Ea[u(Wτa+Br
)] =

∫
∂Br

u(a+ x)µr(dx),(5.2.16)

therefore u has the mean-value property, and so it must satisfy (5.2.12). The only
unresolved issue is whether u is continuous up to and including ∂D. It turns out
that this depends on the regularity of ∂D. �
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5.2.1. Uniqueness. We can also establish a uniqueness result for the solution just
obtained.

Proposition 5.6. If f is bounded and

(5.2.17) P a(τD <∞) = 1, ∀a ∈ D,
then any bounded solution to (D, f) has the representation (5.2.14).

Proof. Let u be any bounded solution to (D, f), and let

(5.2.18) Dn := {x ∈ D : inf
y∈∂D

||x− y|| > 1

n
}.

From Itô’s rule, we have
(5.2.19)

u(Wt∧τBn∧τDn ) = u(W0) +

d∑
i=1

∫ t∧τBn∧τDn

0

∂u

∂xi
(Ws)dW

(i)
s , 0 ≤ t <∞, n ≥ 1.

Since ∂u/∂xi is bounded in Bn ∩Dn, we may take expectations and conclude that

(5.2.20) u(a) = Ea[u(Wt∧τBn∧τDn )]; 0 ≤ t <∞, n ≥ 1, a ∈ Dn.

As t→∞ and n→∞, (5.2.17) implies that u(Wt∧τBn∧τDn ) converges to f(WτD ),
P a-a.s. The representation (5.2.14) then follows from the bounded convergence
theorem. �

5.2.2. Regularity. It remains to characterise points a ∈ ∂D for which

(5.2.21) lim
x→a
x∈D

Ex[f(WτD )] = f(a)

holds for every bounded, measurable function f : ∂D → R which is continuous at
the point a.

Definition 5.7. Consider the stopping time of the right-continuous filtration {Ft}
given by σD := inf{t > 0 : Wt ∈ Dc}, in contrast to the definition of τD. we call a
point a ∈ ∂D regular for D if P a(σD = 0) = 1, i.e., a Brownian path started at a
does not immediately return to D and remain there for a nonempty time interval.

Also we call a irregular if P a(σD = 0) < 1. However, the event {σD = 0} belongs
to FW

0+ so the Blumenthal zero-one law gives for an irregular point P a(σD = 0) = 0.

Clearly regularity is a local condition, i.e., a ∈ ∂D is regular for D if and only if
a is regular for (a+Br) ∩D for some r > 0.

IN the one-dimensional case, every point of ∂D is regular [KS, 2.7.18], and the
Dirichlet problem is always solvable, the solution being piecewise linear. When
d ≥ 2, more interesting behaviour can occur. In particular, if D = {x ∈ Rd : 0 <
||x|| < 1} is a punctured ball, then for any x ∈ D the Brownian motion starting at
x exits from D on its outer boundary, not at the origin [KS, 3.3.22]. This means
that u defined by (5.2.14) is determined solely by the values of f along the outer
boundary of D, and, except at the origin, this u will agree with the harmonic
function

(5.2.22) ũ(x) := Ex[f(WτB1
)] = Ex[f(WσD )], x ∈ B1.

Now u(0) := f(0), so u is continuous at the origin if and only if f(0) = ũ(0). When
d ≥ 3, it is even possible for ∂D to be connected but contain irregular points.

Theorem 5.8. Assume that d ≥ 2 and fix a ∈ ∂D. The following are equivalent:

(1) (5.2.21) holds for every bounded, measurable function f : ∂D → R which is
continuous at a,

(2) a is regular for D,
(3) for all ε > 0, we have

(5.2.23) lim
x→a
x∈D

P x(τD > ε) = 0.
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Proof. Assume without loss of generality that a = 0. We first prove (i) ⇒ (ii) by
contradiction. If the origin is irregular, then P 0(σD = 0) = 0. Since a Brownian
motion of dimension d ≥ 2 never returns to its origin [KS 3.3.22], we have

(5.2.24) lim
r↓0

P 0(WσD ∈ Br) = P 0(WσD = 0) = 0.

Fix r > 0 for which P 0(WσD ∈ Br) < 1
4 , and choose a sequence {δn}∞n=1 such that

0 < δn < r for all n and δn ↓ 0. With τn := inf{t ≥ 0 : ||Wt|| ≥ δn}, we have
P 0(τn ↓ 0) = 1, and thus

(5.2.25) lim
n→∞

P 0(τn < σD) = 1.

Furthermore, on the event {τn < σD}, we have Wτn ∈ D. For n large enough so
that P 0(τn < σD) ≥ 1

2 , we may write

1

4
> P 0(WσD ∈ Br) ≥ P 0(WσD ∈ Br, τn < σD)(5.2.26)

= E0[1{τn<σD}P
0(WσD ∈ Br|Fτn)](5.2.27)

=

∫
D∩Bδn

P x(WτD ∈ Br)P 0(τn < σD,Wτn ∈ dx)(5.2.28)

≥ 1

2
inf

x∈D∩Bδn
P x(WτD ∈ Br).(5.2.29)

Hence we conclude that P xn(WτD ∈ Br) ≤ 1
2 for some xn ∈ D ∩Bδn . Now choose

a bounded continuous function f : ∂D → R such that f = 0 outside Br, f ≤ 1
inside Br and f(0) = 1. For such a function we have

(5.2.30) lim sup
n

Exn [f(WτD )] ≤ lim sup
n

P xn(WτD∈Br ) ≤
1

2
< f(0),

and (i) fails.
(ii) ⇒ (iii). Observe first of all that for 0 < δ < ε, the function

gδ(x) := P x(Ws ∈ D : δ ≤ s ≤ ε) = Ex[PWδ(τD > ε− δ)](5.2.31)

=

∫
Rd

P y(τD > ε− δ)P x(Wδ ∈ dy)(5.2.32)

is continuous in x. But

(5.2.33) gδ(x)↘ g(x)P x(Ws ∈ D : 0 < s ≤ ε) = P x(σD > ε)

as δ ↓ 0, so g is upper semicontinuous. From this fact and the inequality τD ≤ σD,
we conclude that

(5.2.34) lim sup
x∈D→0

P x(τD > ε) ≤ lim sup
x→0

g(x) ≤ g(0) = 0

by (ii).
(iIi) ⇒ (i). We know that for each r > 0,

(5.2.35) P x( max
0≤t≤ε

||Wt −W0|| < r)

does not depend on x and approaches 1 as ε ↓ 0. But then

P x(||WτD −W0|| < r) ≥ P x
[{

max
0≤t≤ε

||Wt −W0|| < r

}
∩ {τD ≤ ε}

]
(5.2.36)

≥ P 0

[
max
0≤t≤ε

||Wt|| < r

]
− P x[τD > ε].(5.2.37)

Letting x ∈ D → 0 and ε→ 0 successively, we obtain from (iii)

(5.2.38) lim
x∈D→0

P x(||WτD − x|| < r) = 1, 0 < r <∞.

The continuity of f at the origin and its boundedness on ∂D then give us (i). �
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5.3. The one-dimensional heat equation. In this section, we shall establish
stochastic representations for the temperatures in a rod. Consider an infinite rod,
insulated and extended along the x-axis of the (t, x)-plane, and let f(x) denote the
temperature of the rod at time t = 0 and location x. If u(t, x) is the temperature
of the rod at time t ≥ 0 and position x ∈ R, then wit hthe appropriate choice of
units, u will satisfy the heat equation,

(5.3.1)
∂u

∂t
=

1

2

∂2u

∂x2

with initial condition u(0, x) = f(x), x ∈ R. The starting point of our probablistic
treatment is furnished by the observation that the transition density

(5.3.2) p(t;x, y) :=
1

y
P x[Wt ∈ dy] =

1√
2πt

e−(x−y)2/2t, t > 0, x, y ∈ R

of the one-dimesional Brownian family satisfies the partial differential equation

(5.3.3)
∂p

∂t
=

1

2

∂2p

∂x2

(prove this). Suppose then that f : R→ R is a Borel-measurable function satisfying
the condition

(5.3.4)

∫ ∞
−∞

e−ax
2

|f(x)|dx <∞,

for some a > 0. It is well known that

(5.3.5) u(t, x) := Ex[f(Wt)] =

∫ ∞
−∞

f(y)p(t;x, y)dy

is defined for 0 < t < 1/2a, x ∈ R, has derivatives of all orders, and satisfies the
heat equation (5.3.1).

Exercise 11. Show that for any nonnegative integers n,m, under the assumption
(5.3.4), we have

(5.3.6)
∂n+m

∂tn∂xm
u(t, x) =

∫ ∞
−∞

f(y)
∂n+m

∂tn∂xm
p(t;x, y)dy, 0 < t <

1

2a
.

If f is bounded and continuous, then rewriting (5.3.5) as u(t, x) = E0[f(x+Wt)],
we can use the bouned convergence theorem to conclude

(5.3.7) f(x) = lim
t↓0,y→x

u(t, y)

for all x ∈ R.

5.3.1. Tychonoff uniqueness. We shall call p(t;x, y) a fundamental solution to the
problem of finding a function u which satisfies (5.3.1) and agrees with the specified
function f at time t = 0.

We shall say that a function u : Rm → R has continuous derivatives up to a
certain order on a set G, if these derivatives exist and are continuous in the interior
of G, and have continuous extensions to that part of the boundary ∂G which is
included in G. With this convention, we can state the following uniqueness theorem.

Theorem 5.9 (Tychonoff, 1935). Suppose that the function u is C1,2 on (0, T ]×R
an satisfies (5.3.1) there, as well as the conditions

(5.3.8) lim
t↓0,y→x

u(t, y) = 0, x ∈ R,

(5.3.9) sup
0<t≤T

|u(t, x)| ≤ Keax
2

, x ∈ R

for constants K, a > 0. Then u = 0 on (0, T ]×R.

Proof. See [KS, 4.3.3]. �
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Remark 5.10. In particular, applying this to u1, u2 satisfying

(5.3.10) lim
t↓0,y→x

u1(t, y) = lim
t↓0,y→x

u2(t, y), x ∈ R

and the other conditions of the theorem, then applying the theorem to u1 − u2

implies that u1 = u2 on (0, T )×R.

5.3.2. Nonnegative solutions. If the initial temperature f is nonnegative, as it al-
ways is if measured on the absolute scale, then the temperature should remain
nonnegative for all t > 0; this is evident from the representation (5.3.1). Is it possi-
ble to characterize the nonnegative solutions of the heat equation? This was done
by Widder (1944), who showed that such functions u have a representation

(5.3.11) u(t, x) =

∫ ∞
−∞

p(t;x, y)dF (y), x ∈ R,

where F : R→ R is nondecreasing.

Theorem 5.11. Let v(t, x) be a nonnegative function on (0, T )×R. The following
are equivalent

(1) For some nondecreasing function F : R→ R, we have

(5.3.12) v(t, x) =

∫ ∞
−∞

p(T − t;x, y)dF (y), 0 < t < T, x ∈ R,

(2) v ∈ C1,2((0, T )×R) and satisfies the ‘backward’ heat equation

(5.3.13)
∂v

∂t
+

1

2

∂2v

∂x2
= 0

on this strip,
(3) For a Brownian family {Ws,Fs; 0 ≤ s < ∞}, (Ω,F ), {P x}x∈R, and each

fixed t ∈ (0, T ), x ∈ R, the process {v(t + s,Ws),Fs, 0 ≤ s < T − t} is a
martingale on (Ω,F , P x)

(4) For a Brownian family {Ws,Fs; 0 ≤ s <∞}, (Ω,F ), {P x}x∈R, we have

(5.3.14) v(t, x) = Ex[v(t+ s,Ws))], 0 < t ≤ t+ s < T, x ∈ R.

Proof. See [KS, 4.3.6]. �

5.4. The Feynman-Kac formula. The Feynman-Kac formula is a representation
for the solution of the parabolic equation

(5.4.1)
∂u

∂t
+ ku =

1

2
∆u+ g, (t, x) ∈ (0,∞)×Rd,

subject to the initial condition

(5.4.2) u(0, x) = f(x), x ∈ Rd

for suitable functions k : Rd → [0,∞), g : (0,∞)×Rd → R, and f : Rd → R.
In the special case where g = 0, we may defined the Laplace transform

(5.4.3) zα(x) :=

∫ ∞
0

e−αtu(t, x)dt, x ∈ Rd,

and using (5.4.1), (5.4.2), integration by pats, and the assumption that

(5.4.4) lim
tø∞

e−αtu(t, x) = 0, α > 0, x ∈ Rd,

we may compute formally

(5.4.5)
1

2
∆zα =

1

2

∫ ∞
0

e−αt∆udt = (α+ k)zα − f.

The stochastic representation for the solution zα of the elliptic equation (5.4.5) is
known as the Kac formula.
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Definition 5.12. Consider the continuous functions k : Rd → [0,∞), g : [0, T ] ×
Rd → R, and f : Rd → R. Suppose that v ∈ C1,2([0, T )×Rd), and is continuous
on [0, T ]×Rd, and satisfies

(5.4.6) − ∂v

∂t
+ kv =

1

2
∆v + g, on [0, T )×Rd,

(5.4.7) v(T, x) = f(x), x ∈ Rd.

Then the function is said to be a solution of the Cauchy problem for the backward
heat equation (5.3.13) with potential k and Lagrangian g, subject to the terminal
condition (5.4.7).

Theorem 5.13 (Feynman 1948, Kac 1949). Let v be as above, and assume that

(5.4.8) max
0≤t≤T

|v(t, x)|+ max
0≤t≤T

|g(t, x)| ≤ Kea||x||
2

, x ∈ Rd

for constants K > 0 and 0 < a < 1/2Td. Then v admits the stochastic representa-
tion

v(t, x) =Ex
[
f(WT−t exp

(
−
∫ T−t

0

k(Ws)ds

)
(5.4.9)

+

∫ T−t

0

g(t+ θ,Wθ) exp

(
−
∫ θ

0

k(Ws)ds

)]
for 0 ≤ t ≤ T, x ∈ Rd. In particular, such a solution is unique.

Proof. We obtain from Itô’s rule, with (5.4.6)

d

[
v(t+ θ,Wθ) exp

(
−
∫ θ

0

k(Ws)ds

)](5.4.10)

= exp

(
−
∫ θ

0

k(Ws)ds

)[
−g(t+ θ,Wθ)dθ +

d∑
i=1

∂

∂xi
v(t+ θ,Wθ)dW

(i)
θ

]
.

(5.4.11)

Let Sn = inf{t ≥ 0 : ||Wt|| ≥ n
√
d}, n ≥ 1. Choose 0 < r < T − t and integrate on

[0, r ∧ Sn], the resulting stochastic integrals have expectation zero,, so

v(t, x) =Ex
∫ r∧Sn

0

g(t+ θ,Wθ) exp

(
−
∫ θ

0

k(Ws)ds

)
dθ

+ Ex

[
v(t+ Sn,WSn) exp

(
−
∫ Sn

0

k(Ws)ds

)
1{Sn≤r}

]

+ Ex
[
v(t+ r,Wr) exp

(
−
∫ r

0

k(Ws)ds

)
1{Sn r}

]
The first term on the right converges to

(5.4.12) Ex
∫ T−t

0

g(t+ θ,Wθ) exp

(
−
∫ θ

0

k(Ws)ds

)
dθ

as n → ∞ and r → T − t, either by monotone convergence (if g ≥ 0) or by

dominated convergence (it is bounded in absolute value by
∫ T−t

0
|g(t + θ,Wθ)dθ,
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which has finite expectation by (5.4.8)). The second term is dominated by

Ex[|v(t+ Sn,WSn)|1{Sn≤T−t}] ≤ Ke
adn2

P x[Sn ≤ T ]

(5.4.13)

≤ Keadn
2

d∑
j=1

P x
[

max
0≤t≤T

|W (j)
t | ≥ n

]
(5.4.14)

≤ 2Keadn
2

d∑
j=1

P x[W
(j)
T ≥ n] + P x[−W (j)

T ≥ n],(5.4.15)

where we have used [KS,2.6.2], which tells us that for the passage time Tb(ω) =
inf{t ≥ 0;Bt(ω) = b}, the reflection principle gives

(5.4.16) P 0[Tb < t] = 2P 0[Bt > b] =

√
2

π

∫ ∞
b
√
t

e−x
2/2dx.

But since for every x > 0, (prove this)

(5.4.17)
x

1 + x2
e−x

2/2 ≤
∫ ∞
x

e−u
2/2du ≤ 1

x
e−x

2/2,

it follows that

(5.4.18) eadn
2

P x[±W (j)
T ≥ n] ≤ eadn

2

√
T

2π

1

n∓ x(j)
e−(n∓x(j))2/2T

which converges to zero as n → ∞, because 0 < a < 1/2Td. Again by the domi-
nated convergence theorem, the third term is seen to converge to

(5.4.19) Ex

[
v(T,WT−t) exp

(
−
∫ T−t

0

k(Ws)ds

)]
as n→∞, r ↑ T − t. The Feynman-Kac formula (5.4.9) follows. �

Corollary 5.14. Assume that f : Rd → R, k : Rd → [0,∞) and g : [0,∞)×Rd →
R are continuous, and that the continuous function u : [0,∞)×Rd → R is C1,2 on
(0,∞) ×Rd and satisfies (5.4.6), (5.4.7). If for each T > 0 there exists constants
K > 0 and 0 < a < 1/2Td such that (5.4.8) holds for u in place of v, then u admits
the stochastic representation

u(t, x) =Ex
[
f(Wt exp

(
−
∫ t

0

k(Ws)ds

)
(5.4.20)

+

∫ t

0

g(t+ θ,Wθ) exp

(
−
∫ θ

0

k(Ws)ds

)]
for 0 ≤ t ≤ T, x ∈ Rd.

5.5. SDEs and PDEs. Consider the solution to the stochastic integral equation

(5.5.1) X(t,x)
s = x+

∫ s

t

b(θ,X
(t,x)
θ )dθ +

∫ s

t

σ(θ,X
(t,x)
θ )dWθ, t ≤ s <∞

together with the assumptions that

(1) bi(t, x) and σij(t, x) : [0,∞) → Rd → R are continuous and satisfy the
linear growth condition (4.2.15)

(2) (5.5.1) has a weak solution (X(t,x),W ), (Ω,F , P ), {Fs} for every pair (t, x),
and

(3) the solution is unique in the sense of probability law.
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Associated with (5.5.1) is the second-order differential operator
(5.5.2)

(Atf)(x) :=
1

2

d∑
i,k

aik(t, x)
∂2f(x)

∂xi∂xk
+

d∑
i=1

bi(t, x)
∂f(x)

∂xi
, f ∈ C2(Rd), t ≥ 0,

where aik(t, x) are the components of the diffusion matrix. If f is a function of
t ∈ [0,∞) and x ∈ Rd, then (At)(t, x) is obtained by applying At to f(t, ·).

Proposition 5.15. Let f(t, x) : [0,∞) × Rd → R belong to C1,2((0,∞) × Rd).

Then the process Mf = Mf
t ,Ft; 0 ≤ t <∞} given by

(5.5.3) Mf
t = f(t,Xt)− f(0, X0)−

∫ t

0

(∂f
∂s

+ Asf
)

(s,Xs)ds

is a continuous local martingale. If g another such function, then

(5.5.4) 〈Mf ,Mg〉t =

d∑
i,k=1

∫ t

0

aik(s,Xs)
∂

∂xi
f(s,Xs)

∂

∂xk
g(s,Xs)ds.

Furthermore, if f ∈ C0([0,∞) ×Rd) and the coefficients σij , 1 ≤ i ≤ d, 1 ≤ j ≤ r
are of bounded on the support of f , then Mf ∈M c

2 .

Proof. Itô’s rule expresses Mf as a sum of stochastic integrals

(5.5.5) Mf
t =

d∑
i=1

r∑
j=1

M
(i,j)
t , M

(i,j)
t :=

∫ t

0

σij(s,Xs)
∂

∂xi
f(s,Xs)dW

(i)
s .

Introducing the stopping times

(5.5.6) Sn = inf{t ≥ 0 : ||Xt|| ≥ n or

∫ t

0

σ2
ij(s,Xs) ≥ n for some i, j},

and recalling that a weak solution must satisfy condition (iii) of Definition 4.2,

we see that limn→∞ Sn = ∞ a.s. The processes Mf
t (n) := Mf

t∧Sn are continuous

martingales, so Mf ∈ M c,loc. The cross variation formula holds readily from

Mf
t (n). If f has compact support on which each σij is bounded, then the integrand

in the expression for M (ij) is bounded, and so Mf ∈M c
2 . �

Example 5.16. The simplest case is that of a d-dimensional Brownian motion,
which corresponds to bi(t, x) ≡ 0 and σij(t, x) ≡ δij , 1 ≤ i, j ≤ d, then we have

(5.5.7) A f =
1

2
∆f =

1

2

d∑
i=1

∂2f

∂x2
i

, f ∈ C2(Rd).

Exercise 12. Show that a continuous adapted process W = {Wt,Ft; 0 ≤ t <∞}
is a d-dimensional Brownian motion if and only if

(5.5.8) f(Wt)− f(W0)− 1

2

∫ t

0

∆f(Ws)ds,

is in M c,loc for every f ∈ C2(Rd). This provides a martingale characterisation of
Brownian motion.

5.5.1. The Dirichlet problem. Let D be an open subset of Rd, and assume that b, σ
are independent of t.

Definition 5.17. The operator A is called elliptic at the point x ∈ Rd if

(5.5.9)

d∑
i,k=1

aik(x)ξiξk > 0, ∀ξ ∈ Rd\{0}.
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If A is elliptic at every point of D, we say that A is elliptic in D. If there exists a
number δ > 0 such that

(5.5.10)

d∑
i,k=1

aik(x)ξiξk ≥ δ||ξ||2, ∀x ∈ D, ξ ∈ Rd\{0},

then we say that A is uniformly elliptic in D.

Let A be elliptic in the open, bounded domain D, and consider continuous
functions k : D → [0,∞), g : D → R, and f : ∂D → R. The Dirichlet problem is
then to find a continuous function u : D → R such that u is C1,2(D) and satisfies
the elliptic equation

(5.5.11) A u− ku = −g, in D

and the boundary condition

(5.5.12) u = f, on ∂D.

Proposition 5.18. Let u be a solution of the Dirichlet problem above, in the
bounded open domain D, and let τD := inf{t ≥ 0 : Xt 6∈ D}. If for all x ∈ D,

(5.5.13) ExτD <∞,

then under the assumptions (1)–(3) of (5.5.1), we have
(5.5.14)

u(x) = Ex
[
f(XτD ) exp

(
−
∫ τD

0

k(Xs)ds

)
+

∫ τD

0

g(Xt) exp

(
−
∫ t

0

k(Xs)ds

)
dt

]
for every x ∈ D.

Proof. We show that for t ≥ 0,
(5.5.15)

Mt := u(Xt∧τD ) exp
(
−
∫ t∧τD

0

k(Xs)ds
)

+

∫ t∧τD

0

g(Xs) exp
(
−
∫ s

0

k(Xθ)dθ
)
ds

is a uniformly martingale under P x. To that end, consider an increasing sequence
{Dn}∞n=1 of open sets with Dn ⊂ D for all n ≥ 1, and ∪∞n=1Dn = D, so that the
stopping times τD = inf{t ≥ 0 : Xt 6∈ Dn} satisfy limn→∞ τn = τD a.s. P x. Using
Itô’s formula, argue that

M
(n)
t := u(Xt∧τn) exp

(
−
∫ t∧τn

0

k(Xs)ds
)

+

∫ t∧τn

0

g(Xs) exp
(
−
∫ s

0

k(Xθ)dθ
)
ds

is a P x-martingale for every n ≥ 1, x ∈ D.

Also, |Mt(ω)| and |M (n)
t (ω) are bounded above by

max
x∈D
|u(x)|+ (t ∧ τD(ω)) max

x∈D
|g(x)|

for P x-a.e. ω ∈ Ω. Then letting n → ∞ and using the bounded convergence
theorem, it follows that the process M = {Mt,Ft; 0 ≤ t <∞} is a martingale, and
moreover by (5.5.13), it is uniformly integrable.

ThenM∞ = limt→∞Mt is martingale (see [KS, 1.3.20]), and the identity ExM0 =
ExM∞ then gives the representation. �

5.5.2. The Cauchy problem and a Feynman-Kac representation. Fix T > 0 and
appropriate constants L > 0, λ ≥ 1. Consider f : Rd → R, g : [0, T ] ×Rd → R,
and k : [0, T ]×Rd → [0,∞) which are continuous and satisfy

(5.5.16) (i) |f(x)| ≤ L(1 + ||x||2λ) or (ii) f(x) ≥ 0, x ∈ Rd

(5.5.17) (i) |g(t, x)| ≤ L(1 + ||x||2λ) or (ii) g(t, x) ≥ 0, 0 ≤ t ≤ T, x ∈ Rd.

We now formulate the analogue of the Feynman-Kac theorem 5.13.
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Theorem 5.19. Under the preceding assumptions, and those for (5.5.1), suppose
thatv : [0, T ]×Rd → Rd is continuous, of class C1,2([0, T ]×Rd), and satisfied the
Cauchy problem

(5.5.18) − ∂v

∂t
+ kv = Atv + g, in [0, T )×Rd,

(5.5.19) v(T, x) = f(x), x ∈ Rd,

as well as the polynomial growth condition

(5.5.20) max
0≤t≤T

|v(t, x)| ≤M(1 + ||x||2µ), x ∈ Rd,

for some M > 0, µ ≥ 1. Then v(t, x) admits the stochastic representation

v(t, x) = E(t,x)
[
f(XT ) exp

(
−
∫ T

t

k(θ,Xθ)dθ

)
(5.5.21)

+

∫ T

t

g(s,Xs) exp

(
−
∫ s

t

k(θ,Xθ)dθ

)
ds
]

(5.5.22)

on [0, T ]×Rd. In particular, such a solution is unique.

Proof. Proceeding as in the proof of Theorem 5.13, we apply the Itô formula to the
process v(s,Xs) exp(−

∫ s
t
l(θ,Xθ)dθ), s ∈ [t, T ], and obtain with τn := inf{s ≥ t :

||Xs|| ≥ n},

v(t, x) =E(t,x)

[∫ T∧τn

t

g(s,Xs) exp

(
−
∫ s

t

k(θ,Xθ)dθ

)
ds

]

+ E(t,x)

[
v(τn, Xτn) exp

(
−
∫ τn

t

k(θ,Xθ)dθ

)
1{τn≤T}

]
+ E(t,x)

[
f(XT ) exp

(
−
∫ T

t

k(θ,Xθ)dθ

)
1{τn T}

]
We shall use the estimate (see [KS,(5.3.17)]

(5.5.23) E(t,x)

[
max
t≤θ≤s

||Xθ||2m
]
≤ C(1 + ||x||2m)eC(s−t), t ≤ s ≤ T

which is valid for every m ≥ 1 and some C = C(m,K, T, d) > 0. Now the first term
on the right of (??) converges as n→∞ to

(5.5.24) E(t,x)

[∫ T

t

g(s,Xs) exp

(
−
∫ s

t

k(θ,Xθ)dθ

)
ds

]
either by the dominated convergence theorem by (5.5.17)(i) and (5.5.23), or by
the monotone convergence if (5.5.17)(ii) prevails. The second term is bounded in
absolute value by

(5.5.25) E(t,x)[|v(τn, Xτn)|1{τn≤T}] ≤M(1 + n2µ)P (t,x)[τn ≤ T ],

and this last probability can be written using Markov’s inequality as
(5.5.26)

P (t,x)

[
max
t≤θ≤T

||Xθ||| ≥ n
]
≤ n−2mP (t,x)

[
max
t≤θ≤T

||Xθ|||
]
≤ Cn−2m(1 + ||x||2m)eCT ,

by virtue of (5.5.23) and Chebyshev’s inequality. Choosing m > µ, we see that the
right-hand side of (5.5.25) converges to 0 as n→∞. Finally, the last term in (??)
converges to

(5.5.27) E(t,x)

[
f(XT ) exp

(
−
∫ T

t

k(θ,Xθ)dθ

)]
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either by the dominated convergence theorem or the monotone convergence theo-
rem. �

5.6. Portfolio and Consumption Processes. Let us consider a market in which
d + 1 assets (or ‘securities’) are traded continuously. We assume throughout this
setion that there is a fixed time horizon 0 ≤ T < ∞. One of the assets, called the
bond, has a price P0(t) which evolves according to the differential equation

(5.6.1) dP0(t) = r(t)P0(t)dt, P0(0) = p0, 0 ≤ t ≤ T.

The remaining d assets, called stocks, are ‘risky’; their prices are modelled by the
linear stochastic differential equation for i = 1, . . . , d,
(5.6.2)

dPi(t) = bi(t)Pi(t)dt+ Pi(t)
∑

+j = 1dσij(t)dW
(j), Pi(0) = pi, 0 ≤ t ≤ T.

The process W = {Wt = (W (1), . . . , w(d),Ft; 0 ≤ t ≤ T} is a d-dimensional
Brownian motion on a probability space (Ω,F , P ), and the filtration {Ft} is
the augementation under P of the filtration {FW

t } generated by W . The in-
terest rate process {r(t),Ft; 0 ≤ t ≤ T}, as well as the vector of mean rates
of return {b(t) = (b1, . . . , bd(t))

T ,Ft; 0 ≤ t ≤ T} and the dispersion matrix
{σ(t) = {(σij(t))1≤i,j≤d,Ft, 0 ≤ t ≤ T} are assumed to be measurable, adpated,
and bounded uniformly in (t, ω) ∈ [0, T ]×Ω. We set a(t) := σ(t)σT (t) and assume
that for some number ε > 0,

(5.6.3) ξTa(t)ξ ≥ ε||ξ||2, ∀ξ ∈ Rd, 0 ≤ t ≤ T, a.s..

Exercise 13. Under the (5.6.3), σT (t) has an inverse, and

(5.6.4) ||(σT (t))−1ξ|| ≤ ε−1/2||ξ||, ∀ξ ∈ Rd, 0 ≤ t ≤ T, a.s..

Moreover, with â(t) := σT (t)σ(t), we have

(5.6.5) ξT â(t)ξ ≥ ε||ξ||2, , ∀ξ ∈ Rd, 0 ≤ t ≤ T, a.s.,

so σ(t) also has an inverse and

(5.6.6) ||(σ(t))−1ξ|| ≤ ε−1/2||ξ||, ∀ξ ∈ Rd, 0 ≤ t ≤ T, a.s..

We imagine now an investor who starts with some initial endowment x ≥ 0 and
invests it in the d+ 1 assets described previously. Let Ni(t) denote the number of

shares of asset i owned by the investor at time t. Then X0 ≡ x =
∑d
i=0Ni(0)pi,

and the investor’s wealth at time t is

(5.6.7) Xt =

d∑
i=0

Ni(t)Pi(t).

If trading of shares takes place at discrete time points, say at t and t+h, and there
is no infusion or withdrawal of funds, then

(5.6.8) Xt+h −Xt =

d∑
i=0

Ni(t)[Pi(t+ h)− Pi(t)].

If, on the other hand, the investor chooses at time t+h to consime an amount hCt+h,
and reduce the wealth accordingly, then the last equation should be replaced by

(5.6.9) Xt+h −Xt =

d∑
i=0

Ni(t)[Pi(t+ h)− Pi(t)]− hCt+h.

The continuous time analogue of this is

(5.6.10) dXt =
∑
i=0

Ni(t)dPt(t)− Ctdt.
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Taking (5.6.1), (5.6.2), and (5.6.7) into account, and denoting by πi(t) := Ni(t)Pi(t)
the amount invested in the i-th stock, we may write this as

(5.6.11) dXt = (r(t)Xt − Ct)dt+

d∑
i=1

(bi(t)− r(t))πi(t)dt+

d∑
i,j=1

πi(t)σij(t)dW
(j)
t .

Definition 5.20. A portfolio process π = {π(t) = (π1(t), . . . , πd(t))
T ,Ft; 0 ≤ t ≤

T} is a measurable, adapted process for which

(5.6.12)

d∑
i=1

∫ T

0

π2
i (t)dt <∞, a.s.

A consumption process C = {Ct,Ft; 0 ≤ t ≤ T} is a measurable, adapted process
with values in [0,∞) and

(5.6.13)

∫ T

0

Ctdt <∞, a.s.

Remark 5.21. Note that any component of π(t) may become negative, which is to
be interpreted as short-selling a stock. The amount invested in the bond,

(5.6.14) π0(t) := Xt −
d∑
i=1

πt(t)

may also be negative, and this amounts to borrowing at the interest rate r(t).

The conditions (5.6.12) and (5.6.13) ensure that the stochastic differential equa-
tion (5.6.11) has a unique strong solution. Indeed, formal applications of [KS,
Problem 5.6.15] leads to the formula

Xt = e
∫ t
0
r(s)ds

[
x+

∫ t

0

e−
∫ s
0
r(u)du{π(s)T (b(s)− r(s)~1)− Cs}ds(5.6.15)

+

∫ t

0

e−
∫ s
0
r(u)duπT (s)σ(s)dWs

]
, 0 ≤ t ≤ T.

Definition 5.22. A pair (π,C) or portfolio and consumption processes is said to
be admissible for initial endowment x ≥ 0 if the wealth process (5.6.15) satisfies
Xt ≥ 0, 0 ≤ t ≤ T a.s.

If b(t) = r(t)~1 for 0 ≤ t ≤ T then the discount factor e−
∫ t
0
r(s)ds exactly offsets

the rate of growth of all assets and (5.6.15) shows that

(5.6.16) Mt := Xte
−

∫ t
0
r(s)ds − x+

∫ t

0

e−
∫ s
0
r(u)duCsds

is a stochastic integral. In other words, the process consisting of current wealth plus
cumulative consumption, both properly discounted, is a local martingale. When
b(t) 6= r(t)~1, then Mt is no longer a local martingale under P , but becomes one

under a new measure P̃ which removes the drift term π(t)T (b(t)−r(t)~1) in (5.6.11).
More specifically, from Exercise 13 we know that the process

(5.6.17) θ(t) := ((σ(t))−1(b(t)− r(t)~1)

is bounded, and set

(5.6.18) Zt = exp

[
−

d∑
i=1

∫ t

0

θj(s)dW
(j)
s − 1

2

∫ t

0

||θ(s)||2ds

]
.

Then Z = {Zt,Ft; 0 ≤ t ≤ T} is a martingale by the Novikov condition, Theorem
3.25. The new probability measure

(5.6.19) P̃ (A) := E[ZT 1A], A ∈ FT
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is such that P and P̃ are mutually absolutely continuous on FT , and the process

(5.6.20) W̃t := Wt +

∫ t

0

θ(s)ds, 0 ≤ t ≤ T

is a d-dimensional Brownian motion under P̃ by the Girsanov Theorem 3.20. In
terms of W̃ , (5.6.11) may be written as

(5.6.21) Xte
−

∫ t
0
r(s)ds +

∫ t

0

e−
∫ s
0
r(u)duCsds = x+

∫ t

0

e−
∫ s
0
r(u)duπT (s)σ(s)dW̃s

for 0 ≤ t ≤ T a.s.
For an admissible pair (π,C), the left-hand side of (8c) is nonnegative and the

right-hand side is a P̃ -local martingale. It follows that the left-hand side, and

hence also Xte
−

∫ t
0
r(s)ds is a nonnegative supermartingale under P̃ by [KS, Problem

1.5.19]. Let

(5.6.22) τ0 = T ∧ inf{0 ≤ t ≤ T ;Xt = 0}.

According to [KS, Problem 1.3.29],

(5.6.23) Xt = 0, τ0 ≤ t ≤ T

holds a.s. on {τ0 < T}. If τ0 < T , we say that bankruptcy occurs at time τ0.
From the supermartingale property in (8c), we obtain

(5.6.24) Ẽ

[
XT e

−
∫ T
0
r(s)ds +

∫ T

0

e−
∫ s
0
r(u)duCsds

]
≤ x,

whence the following necessary condition for admissibility,

(5.6.25) Ẽ

∫ T

0

e−
∫ s
0
r(u)duCsds ≤ x.

This condition is also sufficient for in the sense of the following proposition.

Proposition 5.23. Suppose x ≥ 0 and a consumption process C are given so that
(5.6.25) is satisfied. Then there exists a portfolio process π such that the pair (π,C)
is admissible for the endowment x.

Proof. Let D :=
∫ T

0
Cte
−

∫ t
0
r(s)dsdt, and define the nonnegative process

(5.6.26) ξt := Ẽ

[∫ T

t

Cse
−

∫ s
t
r(u)du

∣∣∣Ft

]
+ (x− ẼD)e

∫ t
0
r(s)ds,

so that

(5.6.27) ξt = e
∫ t
0
r(s)ds

{
x+mt −

∫ t

0

Cse
−

∫ s
0
r(u)duds

}
,

where

(5.6.28) mt := Ẽ[D|Ft]− ẼD =
E[DZT |Ft]

Zt
− E(DZT )

from Bayes rule of Lemma 3.22. From [KS, Theorem 1.3.13], we may assume that
the P -a.e. path of the martingale

(5.6.29) Nt := E(DZT |Ft), 0 ≤ t ≤ T,

is right continuous with left limits (RCLL), so by [KS, Problem 3.4.16] there exists
a measurable {Ft}-adapted Rd-valued process Y with

(5.6.30)

∫ T

0

||Y (t)||2dt <∞,
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and

(5.6.31) Nt = E(DZT ) +

d∑
j=1

∫ t

0

Yj(s)dW
(j)
s , 0 ≤ t ≤ T,

valid P -a.s. Now mt = u(Nt, Zt)−E(DZT ), where u(x, y) = (x/y), and from Itô’s
rule we obtain with ϕ(t) := (Y (t) +Ntθ(t))/Zt,

(5.6.32) mt =

d∑
j=1

∫ t

0

ϕj(s)dW̃
(j)
s , 0 ≤ t ≤ T.

we have used the relations dZt = −ZtθT (t)dWt and (5.6.20). Now define

(5.6.33) π(t) := e
∫ t
0
r(s)ds(σT (t))−1ϕ(t),

so that ξt in (5.6.26) becomes (8c) when we make the identification ξ = X. Condi-
tion (5.6.12) follows from (5.6.4) and (5.6.30), the boundedness of θ, and the path
continuity of Z and N , the latter being a consequence of (5.6.31). �

Remark 5.24. The representation (5.6.31) cannot be obtained from a direct ap-

plication of [KS, Problem 3.4.16] to the P̃ martingale {mt,Ft; 0 ≤ t ≤ T}. The

reason is that the filtration {Ft} is the augmentation (under P or P̃ ) of {FW
t },

not of {F W̃ }.

5.7. Option pricing and the Black-Scholes. In the context of the previous
subsection, suppose that at time t = 0 we sign a contract which gives us the option
to buy, at a specified time T (called maturity or expiration date), one share of stock

1 at a specified price q, called the exercise price. At maturity, if the price P
(1)
T of

stock 1 is below the exercise price, the contract is worthless to us; on the other hand,

if P
(1)
T > q, we can exercise our option (i.e., buy one share at the preassigned price

q) and then sell the share immediately in the market for P
(1)
T . This contract, which

is called an option, is thus equivalent to a payment of (P
(1)
T −q)+ := max(0, P

(1)
T −q)

dollars at maturity. Sometimes the term European option is used to describe this
financial instrument, in contrast to an American option, which can be exercised at
any time between t = 0 and maturity.

The following definition provides a generalization of the concept of option.

Definition 5.25. A contingent claim is a financial instrument consisting of

(1) a payoff rate g = {gt,Ft; 0 ≤ t ≤ T}, and
(2) a terminal payoff fT at maturity.

Here g is a nonnegative, measurable, and adapted process, and fT is a nonnegative,
FT -measurable random variable, and for some µ > 1, we have

(5.7.1) E

[
fT +

∫ T

0

gtdt

]µ
<∞.

Remark 5.26. An option is a special case of a contingent claim with g ≡ 0 and

fT = (P
(1)
T − q)+.

Definition 5.27. Let x ≥ 0 be given, and let (π,C) be a portfolio/consumption
process pair which is admissible for the initial endowment x. The pair (π,C) is
called a hedging strategy against the contingent claim (g, fT ), provided

(1) Ct = gt, 0 ≤ t ≤ T , and
(2) XT = fT .

holds a.s., where X is the wealth process associated with the pair (π,C) and with
the initial condition X0 = x.
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The concept of hedging strategy is introduced in order to allow the solution of
the contingent claim valuation problem: What is a fair price to pay at time t = 0
for a contingent claim? If there exists a hedging strategy which is admissible for an
initial endowment X0 = x, then an agent who buys at time t = 0 the contingent
claim (g, fT ) for the price x could instead have invested the wealth in such a way
as to duplicate the payoff of the contingent claim. Consequently, the price of the
claim should not be greater than x. Could one begin with an initial wealth strictly
smaller than x and again duplicate the payoff ofthe contingent claim? The answer
to this question may be affirmative, as shown by the following exercise.

Exercise 14. Consider the case r ≡ 0, d = 1, b1 ≡ 0, and σ ≡ 1. Let the contingent
claim g ≡ 0, fT ≡ 0 be given, so obviously there exists a hedging strategy x = 0, C ≡
0, and π ≡ 0. Show that for each x > 0, there is a hedging strategy with X0 = x.

The fair price for a contingent claim is the smallest number x ≥ 0 which allows
the construction of a hedging strategy with initial wealth x. We shall show that
under condition (5.6.3) and the assumptions preceding it, every contingent claim
has a fair price; we shall also derive the explicit Black-Scholes formula for the fair
price of an option.

Lemma 5.28. Let the contingent claim (g, fT ) be given, and define

(5.7.2) Q = e−
∫ T
0
r(u)dufT +

∫ T

0

e−
∫ s
0
r(u)dugsds.

Then ẼQ is finite and is a lower bound on the fair price of (g, fT ).

Proof. Recalling that r is uniformly bounded in t and ω, we may write

(5.7.3) Q ≤ L
(
fT +

∫ T

0

gsds
)
,

where L is some nonrandom constant. From (5.6.18), we have for every ν ≥ 1,

ZνT = exp

(
−

d∑
i=1

∫ T

0

νθj(s)dW
(j)
s − 1

2

∫ T

0

||νθ(s)||2ds

)
(5.7.4)

× exp

(
ν(ν − 1)

2

∫ T

0

||θ(s)||2ds

)
,(5.7.5)

and because ||θ|| is bounded by some constant K, it follows that

(5.7.6) EZνT ≤ exp

(
ν(ν − 1)

2
K2T

)
.

With µ as in (5.7.1), and ν given by (1/ν)+(1/µ) = 1, the Hölder inequality implies
that

ẼQ ≤ LE

[
ZT

(
fT +

∫ T

0

gsds
)]

(5.7.7)

≤ L(EZνT )1/ν

[
E
(
fT +

∫ T

0

gsds
)µ]1/µ

<∞.(5.7.8)

Now suppose that (π,C) is a hedging strategy against the contingent claim
(g, fT ), and the corresponding wealth process is X with initial condition X0 = x.

Recalling Definition 5.27 and (5.7.2), we may rewrite (5.6.24) as ẼQ ≤ x. �

Theorem 5.29. Under condition (5.6.3) and the assumptions preceding it, the fair

price of a contingent claim (g, fT ) is ẼQ. Moreover, there exists a hedging strategy

with initial wealth x = ẼQ.
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Proof. Define

(5.7.9) ξT := e
∫ t
0
r(s)ds

[
ẼQ+mt −

∫ t

0

e−
∫ s
0
r(u)dugsds

]
,

where mt = Ẽ[Q|Ft] = ẼQ. Proceeding exactly in the proof of Proposition 5.23
with D replaced by Q, we define π by (5.6.33) and C ≡ g, so that (5.7.9) becomes

(8c) with the identifications X = ξ, x = ẼQ. But then (5.7.9) can also be written
as

(5.7.10) Xt = Ẽ

[
e−

∫ T
0
r(u)dufT +

∫ T

0

e−
∫ t
s
r(u)dugsds

]
, 0 ≤ t ≤ T,

whence Xt ≥ 0, 0 ≤ t ≤ T , and XT = fT are seen to hold almost surely. �

Exercise 15. Show that the hedging strategy constructed in the proof of Theorem
5.29 is essentially (in the sense of meas × P -a.e. equivalence) the only hedging

strategy corresponding to initial wealth x = ẼQ. In particular, the process X of
(5.7.10) gives the unique wealth process corresponding to the fair price; it is called
the valuation process of the contingent claim.

Example 5.30 (Black-Scholes option valuation formula). In the setting of Remark
5.26 with d = 1 and constant coefficients r(t) ≡ r > 0, σ11(t) ≡ σ > 0, the price of
the bond is

(5.7.11) P0(t) = p0e
rt, 0 ≤ t ≤ T,

and the price of the stock obeys

(5.7.12) dP1(t) = b1(t)P1(t)dt+ σP1(t)dW1(t) = (t)P1(t)dt+ σP1(t)dW̃1(t).

For the option to buy one share of stock at time T and price q, we have from
(5.7.10) the valuation process

(5.7.13) Xt = Ẽ[e−r(T−t)(P1(T )− q)+|Ft], 0 ≤ t ≤ T.
In order to write Xt in a more explicit form, let us observe that the function
(5.7.14)

v(t, x) :=

{
xΦ(ρ+(T − t, x))− qe−r(T−t)Φ(ρ−(T − t, x)), 0 ≤ t < T, x ≥ 0

(x− q)+; t = T, x ≥ 0,

with

(5.7.15) ρ±(t, x) =
1

σ
√
x

[
log

x

q
+ t
(
r ± σ2

2

)]
, Φ(x) =

1√
2π

∫ x

−∞
e−x

2/2dx

satisfies the Cauchy problem

(5.7.16) − ∂v

∂t
+ rv =

1

2
σ2x2 ∂

2v

∂x2
+ rx

∂v

∂x
, on [0, T )× (0,∞)

(5.7.17) v(T, x) = (x− q)+, x ≥ 0,

as well as the conditions of Theorem 5.19. We conclude from that theorem and the
Markov property applied to Xt that

(5.7.18) Xt = v(t, P1(t)), 0 ≤ t ≤ T, a.s.

We thus have an explicit formula for the value of the option at time t in terms of
the current stock price P1(t), the time to maturity T − t, and the exercise price q.

Exercise 16. In the setting of the example above, but with fT = h(P1(T )) where
h : [0,∞) → [0,∞) is a convex piecewise C2 function with h(0) = h′(0) = 0, show
that the valuation process for the contingent claim (0, fT ) is given by

(5.7.19) Xt = Ẽ[e−r(T−t)h(Pt(T ))|Ft] =

∫ ∞
0

h′′(q)vq,T (t, P1(t))dq.
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We denote here by vq,t(t, x) the function of (5.7.14).

5.8. Optimal consumption and investment. In this section we pose and solve a
stochastic optimal control problem for the economics model in Section 5.6. Suppose
that, in addition to the data given there, we have a measurable, adapted, uniformly
bounded discount process β = {β(s),Fs; 0 ≤ s ≤ T} and a strictly increasing,
strictly concave, continuously differentiable utility function U : [0,∞)→ [0,∞) for
which U(0) = 0 and U ′(∞) := limc→∞ U ′(c) = 0. We allow the possibility that
U ′(0) := limc↓0 U

′(c) = ∞. Given an initial endowment x ≥ 0, an investor wishes
to choose an admissible pair (π,C) of portfolio and consumption processes, so as
to maximise

(5.8.1) Vπ,C(x) := E

∫ T

0

e−
∫ s
0
β(u)duU(Cs)ds.

We define the value function for this problem to be

(5.8.2) V (x) = sup
(π,C)

Vπ,C(x),

where the supremum is over all pairs (π,C) admissible for x. From the necessary
condition for admissibility (5.6.25), it is clear that V (0) = 0.

Recall from Proposition 5.23 that for a given consumption process C, (5.6.25) is
satisfied if and only if there exists a portfolio π such that (π,C) is admissible for
x. Let us define D(x) be the class of consumption processes C for which

(5.8.3) Ẽ

∫ T

0

e−
∫ t
0
r(s)dsCtdt = x.

It turns out that in the maximisation indicated in (5.8.2) we may ignore the portfolio
process π, and we need only consider C ∈ D(x).

Proposition 5.31. For every x ≥ 0, we have

(5.8.4) V (x) = sup
C∈D(x)

E

∫ T

0

e−
∫ s
0
β(u)duU(Cs)ds.

Proof. Suppose that (π,C) is admissible for x > 0, ad set

(5.8.5) y := Ẽ

∫ T

0

e−
∫ s
0
β(u)duU(Cs)ds. ≤ x.

If y > 0, we may defined Ĉt := (x/y)Ct so that Ĉ ∈ D(x). There exists then a

portfolio process p̂i such that (π̂, Ĉ) is admissible for x, and

(5.8.6) Vπ,C(x) ≤ Vπ̂,Ĉ(x).

If y = 0, then Ct = 0 a.e., t ∈ [0, T ] almost surely and we can find a constant c > 0

such that Ĉ ≡ c satisfies (5.8.3). Again, (5.8.6) holds for some π̂ chosen so that

(π̂, Ĉ) is admissible for x. �

Since U ′ : [0,∞]→ [0, U ′(0)] is surjective and strictly decreasing, it has a strictly
deceasing and surjective inverse function I : [0, U ′(0)] → [0,∞]. We extend I by
setting I(y) = 0 for y > U ′(0). Note that I(0) = ∞ abd I(∞) = 0. It is easily
verified that

(5.8.7) U(I(y))− yI(y) ≥ U(c)− yc, 0 ≤ c <∞, 0 < y <∞.
Define a function X : [0,∞]→ [0,∞] by

(5.8.8) X (y) = Ẽ

∫ T

0

e−
∫ s
0
r(u)duI(yZse

∫ s
0

(β(u)−r(u))du)ds,

and assume that

(5.8.9) X (y) <∞, 0 < y <∞.
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Also define ȳ := sup{y ≥ 0 : X is strictly decreasing on [0, y]}.

Exercise 17. Under condition (5.8.9), show that X is continuous and strictly
decreasing on [0, ȳ] with X (0) =∞ and X (ȳ) = 0.

Let Y : [0,∞]→ [0, ȳ] be the inverse of X . For a given initial endowment x ≥ 0,
define the processes

(5.8.10) η∗s := Y (x)Zse
∫ s
0

(β(u)−r(u))du

(5.8.11) C∗s := I(η∗s ).

The definition of Y implies that C∗ ∈ D(x). We show now that C∗ is an optimal
consumption process.

Theorem 5.32. Let x ≥ 0 be a given and assume that (5.8.9) holds. Then the
consumption process C∗ is optimal, i.e.,

(5.8.12) V (x) = E

∫ ∞
0

e−
∫ t
0
β(s)dsU(C∗t )dt

Proof. It suffices to compare C∗ to an arbitrary C ∈ D(x). For such a C, we have

E

∫ ∞
0

e−
∫ t
0
β(s)ds(U(C∗t )− U(Ct))dt(5.8.13)

= E

∫ ∞
0

e−
∫ t
0
β(s)ds(U(I(η∗t )))− η∗t I(η∗t ))− (U(Ct)− η∗tCt)dt(5.8.14)

+ Y (x)Ẽ

∫ T

0

e−
∫ t
0
r(s)ds(C∗t − Ct)dt.(5.8.15)

The first expectation on the right-hand side is nonnegative because of (5.8.7), while
the second vanishes because both C∗ and C are in D(x). �

Having thus determined the value function and the optimal consumption process,
we appeal to the construction in the proof of Proposition 5.23 for the determination
of a corresponding portfolio process π∗. This does not provide us with a very useful
representation of π∗, but one can specialise the model in various ways so as to
obtain V,C∗, π∗ more explicitly.



56 STOCHASTIC PROCESSES

Appendix A. Measure theory background

A.1. Probability space. A probability space is a triple (Ω,F , P ). Here Ω is a
set, F a σ-algebra, i.e., a nonempty collection of subsets of Ω such that (i) if A ∈ F
then the complement Ac ∈ F and (ii) if Ai is a countable sequence of sets in F then
the union ∪iAi ∈ F . As a consequence F is closed under countable intersection.

A measure µ : F → R is a nonnegative countably additive function, i.e., µ(A) ≥
µ(∅) = 0 for all A ∈ F and µ(∪iAi) =

∑
i µ(Ai) for any countable sequence

Ai ∈ F . If µ(Ω) = 1, then we call µ a probability measure and denote it P .

Example A.1. Let Ω be a countable set, F the power set of Ω, and

(A.1.1) P (A) =
∑
x∈A

p(x),
∑
x∈Ω

p(x) = 1.

Example A.2. Let Ω = R, F the Borel subgalgebra, i.e., the smallest σ-algebra
containing the open sets. Define a Stieltjes measure function F nondecreasing and
right-continuous on R, i.e.,

(A.1.2) lim
y→x+

F (y) = F (x).

Associated to each such F is a unique measure such that µ((a, b]) = F (b) − F (a).
The special case F (x) = x gives the Lebesgue measure. To get Lebesgue measure
on Rd is slightly more complicated, and requires an extra condition.

Now a random variable on the probability space Ω is a function X : Ω→ R such
that for every Borel set B in R we have X−1(B) = {ω : X(ω) ∈ B} ∈ F .

Example A.3. (1) If Ω is a discrete probability space then any X is a random
variable. (2) The indicator (or characteristic) function 1A of a set A ∈ F is also a
random variable.

A.2. Distributions. X induces a probability measure on R, called its distribution
by setting µ(A) = P (X ∈ A) := P (X−1(A)) for all Borel sets A ⊂ R. The
distribution is described by its distribution function

(A.2.1) F (x) = P (X ≤ x)

Now let F be a distribution function. Then it is nondecreasing, right-continuous,
and

(A.2.2) lim
x→∞

F (x) = 1, lim
x→−∞

F (x) = 0.

Conversely, any function F satisfying these properties is the distribution function
of some random variable. Also, if random variables X and Y induce the same
distribution µ on R, then we say they are equal in distribution. From the above
characterisation, we that this holds if and only if X and Y have the same distribu-
tion function, namely P (X ≤ x) = P (Y ≤ x) for all x. We denote this by

(A.2.3) X
d
= Y.

We say X has a density function fX if a distribution function F has the form

(A.2.4) F (x) =

∫ x

−∞
fX(y)dy.

On the other hand, we can start with f and use the above to define an F . All we
need is for f(x) ≥ 0 and

∫
R
f(x)dx = 1.

Example A.4. Exercise: determine F (x) for the first two examples below:

(1) The uniform distribution on (0, 1) given by f(x) = 1(0,1)

(2) The exponential distribution with rate λ given by f(x) = λe−λ(x) for x ≥ 0
and 0 otherwise.

(3) The standard normal distribution given by f(x) = (2π)−1/2 exp(−x2/2).
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Call a distribution function on R absolutely continuous if it has a density, and
singular if the corresponding measure is singular with respect to Lebesgue measure.
Also, call a distribution function (or the induced probability measure) discrete if
there is a countable set A with P (Ac) = 0. The simplest example is taking F (x) = 1
for x ≥ 0 and F (x) = 0 for x < 0.

A.3. Random variables. Let’s generalise a little. Let (S,S) be a measure space
with σ-algebra S. We call a function X : Ω → S measurable if X−1(B) = {ω :
X(ω) ∈ B} ∈ F for all B ∈ S. Note that if {ω : X(ω) ∈ A} ∈ F for all A ∈ A
and A generates S, then X is measurable.

Example A.5. Conisder Rd with the Lebesgue measure. Then the sets (a1, b1)×
· · · × (ad, bd) for all ai < bi form such an A.

If X : Ω → S and f : S → T are measurable, then f(X) is measurable. (Prove
this.) Moreover, if X1, X2, . . . are random variables then so are (also prove this)

(A.3.1) inf
n
Xn, sup

n
Xn, lim inf

n
Xn, lim sup

n
Xn.

From this we see that

(A.3.2) Ω0 := {ω : lim
n→∞

X exists} = {ω : lim sup
n→∞

X − lim inf
n

Xn = 0}

is a measurable set. If P (Ω0) = 1, we say that Xn converges almost surely or almost
everywhere. Note that X∞ = lim supnXn may be infinite, so it is sometimes useful
to extend the definition of random variable to the extended real line [−∞,∞].

A.4. Integration. We want to define integration. We will do it quickly, but step
by step over a measure space (Ω,F ) with a σ-finite measure µ. First, call f a
simple function if f =

∑n
i=1 ai1Ai for disjoint sets Ai with µ(Ai) <∞. Then define

(A.4.1)

∫
fdµ =

n∑
i=1

µ(Ai).

We say f ≥ g almost everywhere µ({ω : f(ω) < g(ω)}) = 0, and write a.s. for
short.

Lemma A.6. Let f, g be simple functions. Then

(1) If f ≥ 0 a.s. then
∫
f dµ ≥ 0.

(2)
∫
af dµ = a

∫
f dµ for all a ∈ R.

(3)
∫
f + g dµ =

∫
f dµ+

∫
g dµ.

If g ≤ f a.s. then
∫
g dµ ≤

∫
f dµ.

|
∫
f dµ| ≤

∫
|f |dµ.

On to the next step. Let A be a set with µ(A) < ∞ and let h be a bounded
function that vanishes on Ec. If f, g are simple functions such that f ≤ h ≤ g, then
we want

∫
f dµ ≤

∫
h dµ ≤

∫
g dµ. so define

(A.4.2)

∫
h dµ = sup

f≤h

∫
f dµ = inf

g≤h

∫
g dµ.

The last equality is statement to be proven. Then we can prove the above lemma
for bounded functions.

On to nonnegative functions. Let f ≥ 0. Then define
(A.4.3)∫

f dµ = sup{
∫
hdµ : 0 ≤ h ≤ f, h is bounded and µ({x : h(x) > 0}) <∞}

Finally, for a general function f , we say f is integrable if
∫
|f |dµ < ∞. Define

f+ = max(f, 0) and f− = max(−x, 0), then define the integral of f by

(A.4.4)

∫
f dµ =

∫
f+dµ+

∫
f−dµ.
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Note the right hand side is well defined since the integrands are bounded by |f |.
Then all the properties of the above lemma hold true.

Exercise 18. Prove the Riemann-Lebesgue lemma: If f is integrable then

(A.4.5) lim
n→∞

∫ ∞
−∞

g(x) cos(nx)dx = 0

Theorem A.7 (Jensen’s inequality). Let f be a convex function on R, that is,
cf(x) + (1 − c)f(y) ≥ f(cx + (1 − c)y) for all c ∈ (0, 1) and x, y ∈ R. If µ is a
probability measure and g, f(g) are integrable then

(A.4.6) f
(∫

g dµ
)
≤
∫
f(g)dµ.

Define ||f ||p = (
∫
|f |pdµ)1/p for any 1 ≤ p ≤ ∞.

Theorem A.8 (Hölder’s inequality). Given p, q ∈ (1,∞) such that 1
p + 1

q = 1, then

(A.4.7)

∫
|fg|dµ ≤ ||f ||p||g||q.

Note that the case p = q = 2 is known as the Cauchy-Schwartz inequality.
We say that fn → f in measure if for any ε > 0, we have µ({x : |fn(x)− f(x)| >

ε}) = 0 as n→∞. The next theorem is used to prove the one following it, and so
on.

Theorem A.9. The following theorems hold:

(1) (Bounded convergence theorem) Let A be a set with µ(A) <∞, and suppose
that (i) fn = 0 on Ac, (ii) |fn(x)| ≤M for some M > 0, and (iii) fn → f
in measure. Then

(A.4.8)

∫
f dµ = lim

n→∞

∫
fndµ

(2) (Fatou’s lemma) If fn ≥ 0 for all n, then

(A.4.9) lim inf
n→∞

∫
fndµ ≥

∫
(lim inf
n→∞

fn)dµ

(3) (Monotone convergence theorem) If fn ≥ 0 for all n, and fn ↑ f then

(A.4.10)

∫
fndµ ↑

∫
f dµ.

(4) (Dominated convergence theorem) If fn → f almost everywhere, |fn| ≤ g
for all n, and g is integrable, then

(A.4.11)

∫
fndµ→

∫
f dµ.

Exercise 19. Prove Minkowski’s inequality: ||f + g||p ≤ ||f ||p + ||g||p for any
p ∈ [1,∞].

A.5. Expected value. Now we specialise back to a probability measure µ = P .
If X ≥ 0 is a random variable on (Ω,F , P ) then define its expected value or mean
to be EX =

∫
X dP . Also set EX = EX+−EX−. We observe the following basic

properties:

(1) E(X + Y ) = EX + EY
(2) E(aX + b) = aEX + b for any a, b ∈ R
(3) If X ≥ Y , then EX ≥ EY .

Since EX is defined by integration, we have the following results from the previous
theorems:

Theorem A.10. The following theorems hold:
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(1) (Jensen) If f is convex, then E(f(X)) ≥ f(EX) as long as both expecta-
tions exist, that is, E|X|, E|f(X)| <∞.

(2) (Hölder) If p, q ∈ [1,∞] with 1
p + 1

q = 1, then E|XY | ≤ ||X||p||Y ||q.
(3) (Fatou) If Xn ≥ 0 for all n, then lim infn→∞EXn ≥ E(lim infn→∞Xn).
(4) (Monotone convergence) If Xn ≥ 0 for all n and Xn ↑ X, then EXn ↑ EX.
(5) (Dominated convergence) If Xn → X almost surely, |Xn| ≤ Y for all n,

and |EY | ≤ ∞ then EXn → EX.

Note that if Y is constant, then the last statement is the bounded convergence
theorem. To state the next theorem, we define E(X;A) =

∫
A
XdP.

Theorem A.11 (Chebyshev-Markov inequality). Let f ≥ 0, and iA = inf{f(a) :
a ∈ A} for a Borel set A ⊂ R. Then

(A.5.1) iAP (X ∈ A) ≤ E(f(X);X ∈ A) ≤ Ef(X).

Some call Markov’s inequality the special case f(a) = a2 and A = {a : |a| ≥ b}, in
which case b2P (|X| ≥ b) ≤ EX2.

Proposition A.12. Suppose Xn → X almost surely, and let f, g be continuous
functions such that (i) f ≥ 0 and f(x) → ∞ as |x| → ∞, (ii) |g(x)|/f(x) → 0
as |x| → ∞, and (iii) for all n, we have Ef(Xn) ≤ M for a fixed M . Then
Eg(Xn)→ Eg(X).

The most important special case of the above result is when f(x) = |x|p, p > 1 and
g(x) = x.

Theorem A.13 (Change of variables). Let X be a random variable on (S,S) with
distribution µ, that is, µ(A) = P (X ∈ A). If f is a measurable function from
S → R with either f ≥ 0 or E|f(X)| ≤ ∞, then

(A.5.2) Ef(X) =

∫
S

f(y)µ(dy)

If we write h for X and P ◦ h−1 for µ we have

(A.5.3)

∫
Ω

f(h(ω))dP =

∫
S

f(y)d(P ◦ h−1).

Using this theorem we can compute expected values by integrating on R. To set
up our examples, we define the k-th moment of X to be EXk, for some positive
integer k. If k = 1, EX is called the mean and denoted µ. If EX2 < ∞, the
variance of X is defined to be

(A.5.4) var(X) := E(X − µ)2 = EX2 − 2µEX + µ2 = EX2 − µ2.

Exercise 20. Show that if X is an exponential distribution of rate 1 then

(A.5.5) EX =

∫ ∞
0

xke−xdx = k!

Moreover, if we scale 1
λX, it has density λe−λy for y ≥ 0, and has mean λ−1 and

variance λ−2.

Exercise 21. Show that if X is the standard normal distribution, then EX = 0
and EX = 1. If Y = µX + σ with µ > 0, σ ∈ R, then EY = µ and var(Y ) = σ2,
and Y has density

(A.5.6)
1√

2πσ2
e−(y−µ)2/2σ2

.

It is the normal distribution with mean µ and variance σ2.

Exercise 22. We say that X has Bernoulli distribution with parameter p if P (X =
1) = p and P (X = 0) = 1− p. Show that EX = p and var(X) = p(1− p).
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Exercise 23. We say that X has Poisson distribution with parameter λ if P (X =
k) = e−λλk/k! for k = 0, 1, . . . . Show that

(A.5.7) E(X(X − 1) . . . (X − k + 1)) = λk,

and deduce that EX = λ and var(X) = λ.

Exercise 24. (Inclusion-exclusion) Let A1, A2, . . . be events with A = ∪ni=1Ai.
Prove that 1A = 1−

∏n
i=1(1− 1Ai). Expand the right hand side and take expected

value to conclude

P (∪ni=1Ai) =

n∑
i=1

P (Ai)−
∑
i<j

P (Ai ∩Aj) +
∑
i<j<k

P (Ai ∩Aj ∩Ak)− · · ·(A.5.8)

· · · (−1)−1P (∩ni=1Ai)(A.5.9)

Exercise 25. (Bonferroni inequalities) Let A1, A2, . . . be events with A = ∪ni=1Ai.
Prove that 1A ≤

∑n
i=1 1Ai . Then take expected values to conclude

P (∪ni=1Ai) ≤
n∑
i=1

P (Ai)(A.5.10)

P (∪ni=1Ai) ≥
n∑
i=1

P (Ai)−
∑
i<j

P (Ai ∩Aj)(A.5.11)

P (∪ni=1Ai) ≤
n∑
i=1

P (Ai)−
∑
i<j

P (Ai ∩Aj) +
∑
i<j<k

P (Ai ∩Aj ∩Ak)(A.5.12)

In general, if we stop the inclusion-exclusion formula after an even (odd) number
of sums, we get an lower (upper) bound.

A.6. Product measures. Let (X1,A1, µ1), (X2,A2, µ2) be two σ-finite measure
spaces. Define Ω = X1×X2 and F = A1×A2, the σ-algebra generated by A1×A2

for A1 ∈ A1, A2 ∈ A2.

Theorem A.14. There is a unique measure µ on F with µ(A1×A2) = µ1(A1)µ2(A2).

Applying the theorem with induction, we obtain Lebesgue measure on the Borel
subsets in Rn.

Theorem A.15 (Fubini’s theorem). If f ≥ 0 and
∫
|f |dµ <∞, then

(A.6.1)∫
X1

∫
X2

f(x1, x2)µ2(dx2)µ1(dx1) =

∫
X1×X2

fdµ =

∫
X2

∫
X1

f(x1, x2)µ1(dx1)µ2(dx2)

Example A.16. Let (X1,A1, µ1) = (X2,A2, µ2) with X1 = N, A1 all subsets of
N, and µ1 the counting measure. Define f(n, n) = 1, f(n + 1, n) = −1 for n ≥ 1
and 0 otherwise. But then

(A.6.2)
∑
m

∑
n

f(m,n) = 1,
∑
n

∑
m

f(m,n) = 0

Example A.17. Let X1 = (0, 1), X2 = (1,∞) with Borel sets and Lebesgue mea-
sure. Let f(x, y) = e−xy − 2e−2xy. Then

(A.6.3)

∫ 1

0

∫ ∞
1

f(x1, x2)dx2dx1 =

∫ 1

0

x−1
1 (e−x1 − e−2x1)dx1 > 0

(A.6.4)

∫ ∞
1

∫ 1

0

f(x1, x2)dx2dx1 =

∫ ∞
1

x−1
2 (e−x2 − e−2x2)dx2 < 0
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Appendix B. Additional exercises

B.1. Discrete Markov chains and martingales.

(1) (The Pólya Urn scheme) Consider two urns containing a total of N balls.
Pick one of the N balls at random and move it to the other urn. Let Xn be
the number of balls in one of the urns, call it U , after the n-th draw. This
forms a Markov chain over the state space S = {1, . . . , N}, with transition
probability given by

(B.1.1) p(k, k + 1) =
N − k
N

, p(k, k − 1) =
k

N
,

for 1 ≤ k ≤ N , and p(i, j) = 0 otherwise.
(a) Show that all states are recurrent.
(b) Show that µ(x) = 2−N (Nx ) is a stationary distribution.
(c) Show that pn(x, x) = 0 if n is odd.
(d) Show that ExXn+1 = 1 + (1− 2

N )ExXn

(e) Using the last result and induction conclude that

(B.1.2) ExXn =
N

2
−
(

1− 2

N

)n(
x− N

2

)
i.e., the mean ExXn converges exponentially to the equilibrium N/2.

(2) (Brother-sister mating) Two animals are mated, and among their direct
descendants two of opposite sex are selected at random, are mated and the
process continues. Suppose each individual can be one of three genotypes
AA,Aa, aa, (denote it by 2,1,0) and suppose that the type of the offspring
is determined by selecting a letter from each parent. With these rules, the
pair of genotypes in the n-th generation is a Markov chain with six states:

(B.1.3) 22, 21, 20, 11, 10, 00

(a) Compute its transition probability.
(b) Show that the number of A’s in the pair is a martingale.
(c) A state a is called absorbing if Pa(X1 = a) = 1. Notice that 22 and

00 are absorbing states for the chain. Show that the probability of
absorption in 22 is equal to the fraction of A’s in the state. (You may
use (b) if you like.)

(d) Let T = min{n ≥ 0 : Xn = 22 or 00} be the absorption time. Find
ExT for all states x.

(3) (Ehrenfest chain) Consider an urn that contains red and green balls. At
each time n, choose a ball at random, then put it back and add one more
ball of the same colour. Let Xn be the fraction of red balls at time n. Since
Xn ≥ 0 for all n and Xn is a martingale, it follows that Xn converges, say
to X∞.
(a) Show that Xn is a martingale.
(b) Suppose that at time 0 there is one ball of each colour. Show that

the probability that red balls are drawn on the first j draws and then
green balls are drawn on the next n− j is j!(n− j)!/(n+ 1)!.

(c) Using (b) to conclude that for any 1 ≤ j ≤ n+ 1,

(B.1.4) P (Xn =
j

n+ 2
) =

1

n+ 1
.

and therefore the distribution of the limit X∞ is uniform.
(d) Suppose that at time 0 there are r red balls and g green balls. Show

that at X∞ has the distribution

(B.1.5)
(g + r − 1)!

(g − 1)!(r − 1)!
xg−1(1− x)r−1.
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(4) (Galton-Watson process) Recall the branching process in class: Given i.i.d
nonnegative integer-valued random variables {ξni }, define Zn by Z0 = 1,
and

(B.1.6) Zn+1 =

{
ξn1 + · · ·+ ξnZn , if Zn >

0 if Zn = 0.

Also let pk = P (ξni = k), called the offspring distribution.
(a) (Subcritical) Show that if µ < 1, then Zn = 0 for all n sufficiently

large.
(b) (Critical) Show that if µ = 1 and p1 < 1, then Zn = 0 for all n

sufficiently large.
(c) (Supercitical) This process was invented to study the survival of family

names. Suppose each family has exactly 3 children, which are male or
female with equal probability. If only female children keep the family
name, this leads to a branching process with p0 = 1/8, p1 = 3/8, p2 =
3/8, and p3 = 1/8. Show that µ > 1, and compute the probability ρ
that the family name will die out.

(5) (Gambler’s ruin chain) Let {Xn} be independent random variables with

(B.1.7) P (Xi = 1) = p, P (Xi = −1) = 1− p = q

with 0 < p < 1. Let Sn = X0 +X1 + · · ·+Xn, and h(x) = (q/p)x.
(a) Show that Xn is a Markov chain.
(b) Show that Mn = h(Sn) is a martingale with respect to Xn.
(c) (Unfair games) Let 1

2 < p < 1. Given a, b > 0, define the stopping
time N = min{n : Sn 6∈ (a, b)}. Show that

(B.1.8) Px(SN = a) =
( qp )b − ( qp )x

( qp )b − ( qp )a
.

(Hint: First argue that h(x) = ExMN∧n, and letting n tend to infinity
it is equal to

(B.1.9) ExMN = (q/p)aP (SN = a) + (q/p)bP (SN = b)

and solve.)
(d) (Fair games) Let p = q = 1

2 , and a < 0 < b. We have seen that Sn and

S2
n − n are martingales. Show that

(B.1.10) E0N = −ab.
(Hint: Show that as n tends to infinity, the right-hand side of Ex(S2

N∧n−
N ∧ n) = 0 tends to

(B.1.11) a2P0(SN = a) + b2P0(SN = b)− E0N.)

B.2. Brownian motion.

(1) Prove that Brownian motion Bt is not differentiable, with probability one.
(Hint: See Durrett, Theorem 7.1.6)

(2) (The invariance principle) Let’s come back to the fair game, Sn = X1 +
· · ·+Xn where the Xi are independent random variables with P (Xi = 1) =
P (Xi = −1) = 1

2 , and S0 = 0. Define

(B.2.1) Bn(t) =
S[nt]√
n

for t ≥ 0, and [t] denotes the largest integer less than or equal to t. As
n tends to infinity, Bn(t) behaves like a standard Brownian motion. This
convergence of partials sums of i.i.d’s with zero mean and unit variance to a
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Brownian motion is called the invariance principle, though we do not prove
this here.
(a) Show that for a < 0 < b and N = min{n : Sn 6∈ (a, b)}, we have

(B.2.2) P0(Bn(N) = a) = P0(SN = a) =
b

b− a
.

Then conclude that E0T = E0N = −ab, where T = min{n : Bn(t) 6∈
(a, b)}.

(b) Let’s stop the random walk once it drops a units below the historical
maximum. Set

(B.2.3) Mn := max
0≤k≤n

Sk, Yn = Mn − Sn, τ = min{n ≥ 0 : Yn = a}.

Show that P (Mτ = 0) =
1

1 + a
.

(c) Show that P (Mτ ≥ k) =
( a

1 + a

)k
. What is the distribution of Mτ?

(d) Let B(t) be standard Brownian motion. Also let

(B.2.4) M(t) = max
0≤s≤t

B(s), Y (t) = M(t)−B(t), τ = min{t ≥ 0 : Y (t) = a}.

Assuming the invariance principle, argue that M(τ) has an exponen-
tial distribution with mean a.

(Note that τ is a popular strategy for the sale of a stock, i.e., keep the
stock as long as it is going up, but sell it once it drops a units past
its historical best. Since E[B(τ)] = E[M(τ)] − a = 0, in the Brown-
ian motion model of the stock market this strategy does not profit on
average.)

(3) Let {Xn} be i.i.d. random variables on (Ω,F , P ) with EXi = 0 and
var(Xi) ∈ (0,∞) for all i. Let Sn = X1 + · · ·+Xn.
(a) Show using the Central Limit Theorem and Kolmogorov’s 0-1 law to

conclude that lim supSn/
√
n =∞ a.e.

(b) Show that Sn/
√
n does not converge in probability. Hint: Consider

n = m! and argue by contradiction.

(4) (Quadratic variation of Brownian motion) Let {Πn} be a sequence of par-
titions of [0, t] such that limn→∞ ||Πn|| = 0.
(a) Show that the quadratic variation

(B.2.5) V
(2)
t (Πn) =

mn∑
k=1

|B
t
(n)
k

−B
t
(n)
k−1

|2

converges in L2 to t as n→∞. (Hint: Write V
(2)
t (Πn)− t as a sum of

independent, mean-zero random variables, and show that

(B.2.6) E(V
(2)
t (Πn))2 ≤ tE(Z2 − 1)2||Π||,

where Z is a standard normal random variable. See the notes also for
a different proof sketch.)

(b) If moreover
∑∞
n=1 ||Πn|| < ∞, then the convergence takes place with

probability one. (Hint: Show that for all ε > 0,

(B.2.7)

∞∑
n=1

P (|V (2)
t (Πn)− t| > ε) ≤ K

ε2

∞∑
n=1

||Πn||

for some constant K, and apply the Borel-Cantelli lemma.)
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(5) A Wiener process Wt is a stochastic process adapted to a filtration Ft such
that (a) W0 = 0, (b) Wt is a martingale with E[W 2

t ] < ∞ for all t ≥ 0,
such that

(B.2.8) E[(Wt −Ws)
2] = t− s, s ≤ t,

and (c) Wt is continuous in t. By a theorem of Lévy, a Wiener process is
a Brownian motion process. Prove that a Brownian motion process is a
Wiener process.

(6) (Brownian motion is Markov.) Let X and Y be d-dimensional random
vectors on (Ω,F , P ). If G ⊂ F is a sub-σ-algebra, X is indepdent of G
adn Y is G -measurable, then for every A ∈ B(Rd) we have
(a) P [X + Y ∈ A|G ] = P [X + Y ∈ A|Y ], P -a.e.
(b) P [X + Y ∈ A|Y = y] = P [X + y ∈ A] for PY −1-a.e. y ∈ Rd.

where PY −1(B) = P (ω ∈ Ω : X(ω) ∈ B) for any B ∈ B(Rd.)

(7) Prove directly from the definition of the Itô integral that

(B.2.9)

∫ t

0

s dBs = tBs −
∫ t

0

Bsds.

(Hint: Note that
∑
i ∆(siBi) =

∑
i si∆Bi +

∑
iBi+1∆si, where ∆ai :=

ati+1
− ati .)

(8) Use Itô’s formula to prove that

(B.2.10)

∫ t

0

B2
sdBs =

1

3
B3
t −

∫ t

0

Bsds

(9) (The Fisk-Stratanovich integral) Let Bt be a standard Brownian motion,
and ε ∈ [0, 1]. Given a partition Π = {t0, t1, . . . , tn} of [0, t] by 0 = t0 <
t1 < · · · < tn = t, and consider the approximating sum

(B.2.11) Sε(Π) :=

n−1∑
i=0

[(1− ε)Bti + εBti+1
](Bti+1

−Bti)

for the stochastic integral
∫ t

0
Bs dBs. Show that the supremum over parti-

tions converges to

(B.2.12)
1

2
B2
t +

(
ε− 1

2

)
t,

in L2. This expression is a martingale if and only if ε = 0, and gives Itô’s
integral. If ε = 1

2 we get the Fisk-Stratonovich integral, which has the

usual calculus rule
∫ t

0
Bs dBs = 1

2B
2
t . Finally, ε = 1 leads to the so-called

backwards Itô integral. The sensitivity of the limit to the value of ε is a
consequence of the unbounded variation of the Brownian path.

(Hint: First show that Sε(Π) = 1
2B

2
t + (ε − 1

2 )
∑n−1
i=0 (Bti+1

− Bti)2. Then
argue as in Itô’s integral.)

B.3. Stochastic differential equations and PDEs.

(1) (Gronwall inequality): Given a function g(t) ≥ 0 such that

g(t) ≤ α(t) + β

∫ t

0

g(s)ds, 0 ≤ t ≤ T,
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with β ≥ 0 and α : [0, T ]→ R integrable, then

g(t) ≤ α(t) + β

∫ t

0

α(s)eβ(t−s)ds, 0 ≤ t ≤ T.

Hint: Argue that d/dt(e−βt
∫ t

0
g(s)ds) ≤ α(t)e−βt.

(2) Let {Bt = (B
(1)
t , . . . , B

(d)
t ,Ft; 0 ≤ t < ∞} be a d-dimensional Brownian

motion. Show that the cross-variation 〈B(i), B(j)〉t = δijt for 1 ≤ i, j ≤ d.
Hint: Show that for X,Y ∈ M c

2 and a partition Π = {t0, ,̇tn} of [0, t],
we have in probability,

lim
||Π||→0

n∑
k=1

(Xtk −Xtk−1
)(Ytk − Ytk−1

) = 〈X,Y 〉t.

(3) Show that the stochastic process X constructed from the proof of the exis-
tence of strong solutions [KS, 5.2.9] satisfies the expected stochastic integral
equation, i.e., argue that∣∣∣∣∣∣∣∣∫ t

0

b(s,X(k)
s )ds−

∫ t

0

b(s,Xs)ds

∣∣∣∣∣∣∣∣2
and

E

∣∣∣∣∣∣∣∣∫ t

0

σ(s,X(k)
s )dWs −

∫ t

0

σ(s,Xs)dWs

∣∣∣∣∣∣∣∣2
converge to 0 a.s. for 0 ≤ t ≤ T as k →∞. Note that {X(k)

t } is a Cauchy

sequence and X
(k)
t → Xt a.s. in L2(Ω,F , P ).

(4) Let B = {Bt,Ft; 0 ≤ t < ∞} be a 1-dimensional standard Brownian
motion.
(a) Solve the stochastic differential equation:(

dX1

dX2

)
=

(
1
0

)
dt+

(
1 0
0 X1

)(
dB1

dB2

)
(b) Solve

dXt = Xtdt+ dBt.

(Hint: multiply the equation by e−t, and compare with d(e−tXt).)
(c) Solve the Ornstein-Uhlenbeck, or Langevin equation

dXt = µXtdt+ σdBt

where µ, σ ∈ R.

(5) Let D be an open subset of Rd, and g : D → R, f : ∂D → R continuous,
bounded functions. Assume that u : D → R is continuous, of class C2(D),
and solves the Poisson equation

1

2
∆u = −g

in D, subject to the boundary condition

u = f

on ∂D. Let’s show that u(x) can be represented by

(B.3.1) u(x) = Ex[f(WτD )] +

∫ τD

0

g(Wt)dt, x ∈ D.
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(a) Consider an increasing sequence {Dn}∞n=1 of open sets with Dn ⊂ D
for all n ≥ 1, and ∪∞n=1Dn = D, so that the stopping times τD =
inf{t ≥ 0 : Wt 6∈ Dn} satisfy limn→∞ τn = τD a.s. P x. Using Itô’s
formula, argue that

M
(n)
t := u(Wt∧τn) +

∫ t∧τn

0

g(Ws)ds

is a P x-martingale for every n ≥ 1, x ∈ D.
(b) Let

Mt := u(Wt∧τD ) +

∫ t∧τD

0

g(Ws)ds.

Argue that |Mt(ω)| and |M (n)
t (ω) are bounded above by

max
x∈D
|u(x)|+ (t ∧ τD(ω)) max

x∈D
|g(x)|

for P x-a.e. ω ∈ Ω.
(c) Letting n→∞ and using the bounded convergence theorem, we know

that the process M = {Mt,Ft; 0 ≤ t <∞} is a martingale. Show that
if M is uniformly integrable, then M∞ = limt→∞Mt

M∞ = u(WτD ) +

∫ τD

0

g(Ws)ds, P x-a.s..

is a martingale, and from ExM0 = ExM∞, deduce the representa-
tion (B.3.1). (Hint: The general case is Problem 1.3.20 in Karatzas-
Shreve.)

(d) (Optional) Prove that M is uniformly integrable, e.g., by showing that
ExτD <∞,∀x ∈ D.

(6) (Optional) Let W be a Brownian motion. Define

T = inf{0 ≤ t ≤ 1 : t+W 2
t = 1},

Xt = − 2

(1− t)2
Wt1t≤T , 0 ≤ t < 1,

and X1 = 0.

(a) Prove that P (T < 1) = 1, and therefore
∫ 1

0
X2
t dt <∞ a.s.

(b) Apply Ito’s formula to the process {(Wt/(1−t))2; 0 ≤ t < 1 to conclude
that∫ 1

0

XtdWt −
1

2

∫ 1

0

X2
t dt = −1− 2

∫ T

0

((1− t)−4 − (1− t)−3)W 2
t dt ≤ −1.

(7) Recall that d-dimensional Brownian motion corresponds to bi(t, x) ≡ 0 and
σij(t, x) ≡ δij , 1 ≤ i, j ≤ d, and we have

A f =
1

2
∆f =

1

2

d∑
i=1

∂2f

∂x2
i

, f ∈ C2(Rd).

Show that a continuous adapted process W = {Wt,Ft; 0 ≤ t < ∞} is a
d-dimensional Brownian motion if and only if

f(Wt)− f(W0)− 1

2

∫ t

0

∆f(Ws)ds,

is in M c,loc for every f ∈ C2(Rd). This provides a martingale characteri-
sation of Brownian motion.
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(8) (a) Recall the dispersion matrix {σ(t) = {(σij(t))1≤i,j≤d,Ft, 0 ≤ t ≤ T}
for the stocks i = 1, . . . , d, assumed to be measurable, adapted, and
bounded uniformly in (t, ω) ∈ [0, T ]×Ω. We set a(t) := σ(t)σT (t) and
assume that for some number ε > 0,

ξTa(t)ξ ≥ ε||ξ||2, ∀ξ ∈ Rd, 0 ≤ t ≤ T, a.s..

Show that σT (t) has an inverse, and

||(σT (t))−1ξ|| ≤ ε−1/2||ξ||, ∀ξ ∈ Rd, 0 ≤ t ≤ T, a.s..

Moreover, with â(t) := σT (t)σ(t), we have

ξT â(t)ξ ≥ ε||ξ||2, , ∀ξ ∈ Rd, 0 ≤ t ≤ T, a.s.,

so σ(t) also has an inverse and

||(σ(t))−1ξ|| ≤ ε−1/2||ξ||, ∀ξ ∈ Rd, 0 ≤ t ≤ T, a.s.

(b) Derive the stochastic differential equation (5.6.11) in the notes.

dXt = (r(t)Xt − Ct)dt+

d∑
i=1

(bi(t)− r(t))πi(t)dt+

d∑
i,j=1

πi(t)σij(t)dW
(j)
t .

Then derive the strong solution (5.6.11):

Xt = e
∫ t
0
r(s)ds

[
x+

∫ t

0

e−
∫ s
0
r(u)du{π(s)T (b(s)− r(s)~1)− Cs}ds

+

∫ t

0

e−
∫ s
0
r(u)duπT (s)σ(s)dWs

]
, 0 ≤ t ≤ T.

(c) In your own words, explain how the Novikov condition and Girsanov
theorem are applied to the strong solution to obtain the expression

Xte
−

∫ t
0
r(s)ds +

∫ t

0

e−
∫ s
0
r(u)duCsds = x+

∫ t

0

e−
∫ s
0
r(u)duπT (s)σ(s)dW̃s.

Prove that Xte
−

∫ t
0
r(s)ds is a nonnegative supermartingale under P̃

(hint: see [KS, Problem 1.5.19]).

(d) Complete the proof of the sufficient condition for admissibility, Propo-
sition 5.23.

(i) Show that martingale Nt := E(DZT |Ft), 0 ≤ t ≤ T, is right
continuous with left limits (RCLL) P -a.e.

(ii) Show that there exists a measurable {Ft}-adapted Rd-valued

process Y with
∫ T

0
||Y (t)||2dt <∞, and

Nt = E(DZT ) +

d∑
j=1

∫ t

0

Yj(s)dW
(j)
s , 0 ≤ t ≤ T, P -a.s.

(iii) Show using Itô’s formula that for mt := Ẽ[D|Ft] − ẼD and
ϕ(t) := (Y (t) +Ntθ(t))/Zt,

mt =

d∑
j=1

∫ t

0

ϕj(s)dW̃
(j)
s , 0 ≤ t ≤ T.

(iv) Conclude that ξt is a strong solution as desired.
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(9) (a) To complete the proof of the Black-Scholes formula, show that the the
function

v(t, x) :=

{
xΦ(ρ+(T − t, x))− qe−r(T−t)Φ(ρ−(T − t, x)), 0 ≤ t < T, x ≥ 0

(x− q)+; t = T, x ≥ 0,

with

ρ±(t, x) =
1

σ
√
x

[
log

x

q
+ t
(
r ± σ2

2

)]
, Φ(x) =

1√
2π

∫ x

−∞
e−x

2/2dx

satisfies the Cauchy problem

−∂v
∂t

+ rv =
1

2
σ2x2 ∂

2v

∂x2
+ rx

∂v

∂x
, on [0, T )× (0,∞)

v(T, x) = (x− q)+, x ≥ 0,

as well as the conditions of Theorem 5.19 (the Feynman-Kac formula).
(b) In the setting of the Black-Scholes formula, but with fT = h(P1(T ))

where h : [0,∞) → [0,∞) is a convex piecewise C2 function with
h(0) = h′(0) = 0, show that the valuation process for the contingent
claim (0, fT ) is given by

Xt = Ẽ[e−r(T−t)h(Pt(T ))|Ft] =

∫ ∞
0

h′′(q)vq,T (t, P1(t))dq.

We denote here by vq,t(t, x) the function of (5.7.14).

(10) For a fixed a, b ∈ R consider the 1-dimensional equation

dYt =
b− Yt
1− t

dt+ dBt, 0 ≤ t < 1, Y0 = a.

Verify that

Yt = a(1− t) + bt+ (1− t)
∫ t

0

dBs
1− s

, 0 ≤ t < 1

is a solution, and that limt→1 Y )t = b a.s. The process Yt is called the
Brownian bridge.

(11) Find the generator of the following diffusions:
(a) dXt = µXtdt + σdBt, where µ, σ are constants. (Ornstein-Uhlenbeck

process)
(b) dXt = rXtdt+ αXtdBt, where r, α are constants. (Geometric Brown-

ian motion)

(c)

[
dX1

dX2

]
=

[
1
0

]
+

[
1 0
0 X1

] [
dB1

dB2

]
, where Bi are Brownian motion.

(12) Let C2
0 (R) denote functions on R that are compactly supported and twice

differentiable. Find the diffusions whose generator is given by the following:
(a) A f(x) = f ′(x) + f ′′(x), where f ∈ C2

0 (R)

(b) A f(x) = ∂f
∂t + cx∂f∂x + 1

2α
2x2 ∂

2f
∂x2 , where f ∈ C2

0 (R).

(13) Let α(t) = 1
2 ln(1 + 2

3 t
3). If Wt is a Brownian motion, prove that there

exists another Brownian motion W̃t such that∫ α(t)

0

esdWs =

∫ t

0

s dW̃s.



STOCHASTIC PROCESSES 69

(14) Let Wt be a Brownian motion in R. Show that Xt := W 2
t is a weak solution

to the stochastic differential equation

dXt = dt+ 2|Xt|
1
2 dW̃t.

(Hint: Use Itô’s formula to express Xt as a stochastic integral.)
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